首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Florida Current flows through the Straits of Florida, which starts as a zonal channel and turns to become a meridional channel. The spatial structure of the Florida Current and its transport, potential vorticity, and related dynamical properties are investigated using a three-dimensional, baroclinic, primitive equation model with a mesoscale-admitting (5.6 km) horizontal resolution and 25 vertical (sigma: terrain-following) levels. At 83°W, the Florida Current fills only a portion of the channel; however, due to the interaction with the shoaling bottom topography (from a maximum depth of over 2000 m at 83°W to less than 800 m at 27°N) and the narrowing Straits of Florida (from a maximum width of about 170 km at 83°W to about 110 km at 27°N), the Florida Current fills the entire channel at 27°N, and the potential vorticity distribution is altered. The specified transport of 28.6 Sverdrup (1 Sv = 106 m3 s−1) from the Loop Current at the western boundary and the inflow from the Old Bahama Channel of 1.9 Sv converge into the meridional channel. With an additional inflow of 1.2 Sv from the Northwest Providence Channel, the simulated total transport of 31.8 Sv at 27°N is comparable to the STACS (Subtropical Atlantic Climate Studies) mean transport of 31.7 Sv. Both vertically and laterally integrated subsectional transports are examined at transects 83°W, 82°W, 81°W, 25°N, 26°N, and 27°N. The potential vorticity increases (decreases) on the cyclonic (anticyclonic) side of the Florida Current at 27°N compared to 83°W. The downstream variation of static stability, relative vorticity, and Froude number is also examined. While the vertical shear is strong only on the northern side at 83°W it is comparable on the both western and eastern sides downstream at 27°N, reaching to the bottom of the meridional channel. Large values of the Froude number exist only in the upper 300 m of the zonal channel, but they reach to the bottom of the meridional channel.  相似文献   

2.
Sea level change predicted by the CMIP5 atmosphere–ocean general circulation models (AOGCMs) is not spatially homogeneous. In particular, the sea level change in the North Atlantic is usually characterised by a meridional dipole pattern with higher sea level rise north of 40°N and lower to the south. The spread among models is also high in that region. Here we evaluate the role of surface buoyancy fluxes by carrying out simulations with the FAMOUS low-resolution AOGCM forced by surface freshwater and heat flux changes from CO2-forced climate change experiments with CMIP5 AOGCMs, and by a standard idealised surface freshwater flux applied in the North Atlantic. Both kinds of buoyancy flux change lead to the formation of the sea level dipole pattern, although the effect of the heat flux has a greater magnitude, and is the main cause of the spread of results among the CMIP5 models. By using passive tracers in FAMOUS to distinguish between additional and redistributed buoyancy, we show that the enhanced sea level rise north of 40°N is mainly due to the direct steric effect (the reduction of sea water density) caused by adding heat or freshwater locally. The surface buoyancy forcing also causes a weakening of the Atlantic meridional overturning circulation, and the consequent reduction of the northward ocean heat transport imposes a negative tendency on sea level rise, producing the reduced rise south of 40°N. However, unlike previous authors, we find that this indirect effect of buoyancy forcing is generally less important than the direct one, except in a narrow band along the east coast of the US, where it plays a major role and leads to sea level rise, as found by previous authors.  相似文献   

3.
分析比较了中蒙(35°N~50°N,75°E~105°E)、中亚(28°N~50°N,50°E~67°E)和北非(15°N~32°N,17°W~32°E)三个典型干旱区水汽输送特征的异同,及其1961~2010年间的降水时空变化,分析了水汽来源和输送变化及其可能原因。结果显示,由于受不同的气候系统影响,中蒙、北非和中亚干旱区的降水在年内变化上有着显著不同。中蒙和北非干旱区降水呈现夏季风降水的特征;而中亚干旱区降水则为更多受到冬季风的影响。1961~2010年,随着全球气温上升,中蒙干旱区冬季纬向水汽输送增加而经向输送减少,总水汽输送增加;中亚干旱区冬季纬向输送减少而经向增加,总水汽输送减少;北非干旱区冬季纬向输送增加而经向输送减少,总水汽输送增加。夏季中蒙和北非干旱区经向、纬向输送均减小,中亚干旱区夏季纬向输送减少而经向减少,总输送增加。相应的,中蒙干旱区年、冬季和夏季降水分别以4.2、1.3和1.0 mm/10 a的趋势增加;而中亚干旱区冬季(1.2 mm/10 a)和夏季(0.1 mm/10 a)降水增加,年降水则呈减少趋势(-0.8 mm/10 a);北非干旱区年降水和夏季降水分别以0.5 mm/10 a和0.1 mm/10 a的速率增加。冬季中蒙干旱区主要水汽来源是水汽经向输送,而中亚干旱区水汽主要为纬向输送,经纬向水汽均为净输出是北非干旱区降水极少的主要原因,平均总水汽输送量约为-9.48×104 kg/s。冬季低纬度和高纬度环流通过定常波影响干旱区冬季降水。中蒙和中亚干旱区冬季降水主要受西太平洋到印度洋由南向北的波列影响,北非干旱区冬季降水主要和北大西洋上空由北到南的波列相联系。各干旱区的降水对海温变化有着不同的响应:中蒙干旱区冬季降水与冬季太平洋西海岸和印度洋海温呈显著正相关,夏季与海温相关不显著;中亚干旱区与地中海和阿拉伯海温相关,且与阿拉伯海温为正相关。  相似文献   

4.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   

5.
The observed meridional overturning circulation (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circulation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Current transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simu-lated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.  相似文献   

6.
By assimilating information required for the estimation of the Atlantic meridional overturning circulation (AMOC) by the Rapid-MOCHA array, we investigate how transports should be constrained. For the period 2004–2011, we find that even the large adjustments in Florida Strait transport (FST) imposed by assimilating FST data do not impact the AMOC strength at 26.5° N while the AMOC away from this section changes due to the baroclinic response. Moreover, the high correlation between the FST and AMOC previously reported cannot be confirmed for this longer period. When assimilating FST and AMOC transports in conjunction, simulated transports can both be brought easily into consistency with the Rapid estimates while the representation of the hydrographic data at the mooring locations improves mainly at the eastern boundary. The dynamical constraint through the equations of motion conditions that the errors of the components are correlated and the total AMOC error is a much smaller than the sum of its components. Although Ekman and mid-ocean transports improve when AMOC is assimilated, the excellent AMOC representation relies on error compensation through adjustments of mainly the Ekman component. Assimilating the mooring data together with FST does not improve the representation of the AMOC. Density information is difficult to extract via assimilating temperature and salinity because of the strong density compensation in the subtropical gyre. Alternatively assimilating density from the mooring data directly was of limited success.  相似文献   

7.
Recent observations suggest Antarctic Intermediate Water (AAIW) properties are changing. The impact of such variations is explored using idealised perturbation experiments with a coupled climate model, HadCM3. AAIW properties are altered between 10 and 20°S in the South Atlantic, maintaining constant potential density. The perturbed AAIW remains subsurface in the South Atlantic, but as it moves northwards, it surfaces and interacts with the atmosphere leading to density anomalies due to heat exchanges. For a cooler, fresher AAIW, there is a significant decrease in the mean North Atlantic sea surface temperature (SST), of up to 1°C, during years 51?C100. In the North Atlantic Current region there are persistent cold anomalies from 2,000?m depth to the surface, and in the overlying atmosphere. Atmospheric surface pressure increases over the mid-latitude Atlantic, and precipitation decreases over northwest Africa and southwest Europe. Surface heat flux anomalies show that these impacts are caused by changes in the ocean rather than atmospheric forcing. The SST response is associated with significant changes in the Atlantic meridional overturning circulation (MOC). After 50?years there is a decrease in the MOC that persists for the remainder of the simulation, resulting from changes in the column-averaged density difference between 30°S and 60°N. Rather than showing a linear response, a warmer, saltier AAIW also leads to a decreased MOC strength for years 51?C100 and resulting cooling in the North Atlantic. The non-linearity can be attributed to opposing density responses as the perturbed water masses interact with the atmosphere.  相似文献   

8.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   

9.
利用全球月平均海平面气压资料以及海表温度资料,采用旋转经验正交函数分解(REOF)、Morlet小波分析、相关分析及合成分析等方法研究了亚洲—太平洋地区(20°N~70°N,40°E~120°W)冬季海平面气压异常的空间结构与时间演变特征,并进—步分析了该地区冬季海平面气压异常与全球海温异常的关系.结果表明:亚太地区冬...  相似文献   

10.
进一步从资料分析和大气环流模式的敏感性试验, 对西北太平洋海温异常与亚太中高纬度地区冬季海平面气压异常经向偶极模的关系及影响进行了研究。资料分析表明, 对应冬季亚太地区海平面气压的经向(ME)型偶极模, 西北太平洋中高纬度海温异常的影响存在两个重要关键区。尤其是(40°N~55°N, 150°E~160°W)海区的海温异常与冬季东亚经向型气压偶极模指数IME有明显正相关, (20°N~35°N, 125°E~170°W)海区的海温异常与指数IME有明显负相关。而上述两个关键海区的SSTA对经向型振荡模的影响, 主要是通过热通量异常的作用。敏感性模拟试验清楚表明, 西北太平洋关键区的海温异常对亚洲—太平洋地区冬季海平面气压场的经向偶极模有一定影响。区域1(42°N~62°N, 145°E~165°W)的负异常相对于其自身的正异常来说, 对亚太地区海平面气压场的负经向偶极模贡献更大, 而区域2 [(22°N~42°N, 135°E~175°E)和(26°N~42°N, 175°E~170°W)]的正异常相对区域1的负异常来说对负经向偶极模的贡献更大一些。但是, 单独区域1的负异常海温和单独区域2的正异常海温影响下的海平面气压场响应的负经向偶极模都会有不同程度的位置偏移。当存在区域1的负异常海温和区域2的正异常海温相互匹配的情况下, 亚洲—太平洋地区冬季海平面气压场的负经向偶极模特征更为显著。  相似文献   

11.
The relationship between decadal variations in the North Atlantic meridional overturning circulation (MOC) and North Atlantic/Western European windstorm activity during the extended winter season is studied. According to an ensemble of three 240-year long simulations performed with the ECHAM5-MPIOM model, periods of high decadal windstorm activity frequently occur in the years following a phase of weak MOC (i.e. when the MOC starts to recover). These periods are characterised by a distinctive pattern in the mixed layer ocean heat content (OHC). A positive anomaly is located in the region 45°N?52°N/35°W?16°W (west of France). Negative anomalies are located to the North and South. The signal can be detected both in the heat content of the oceanic mixed layer and in the sea surface temperatures. Its structure is consistent with anomalously enhanced baroclinic instability in the region with the strong negative OHC gradient (30°W?10°W/45°N?60°N), which eventually produces a higher probability of windstorms.  相似文献   

12.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

13.
Variability in the Atlantic Meridional Overturning Circulation (AMOC) has been analysed using a 600-year pre-industrial control simulation with the Bergen Climate Model. The typical AMOC variability has amplitudes of 1?Sverdrup (1 Sv?=?106?m3?s?1) and time scales of 40–70?years. The model is reproducing the observed dense water formation regions and has very realistic ocean transports and water mass distributions. The dense water produced in the Labrador Sea (1/3) and in the Nordic Seas, including the water entrained into the dense overflows across the Greenland-Scotland Ridge (GSR; 2/3), are the sources of North Atlantic Deep Water (NADW) forming the lower limb of the AMOC’s northern overturning. The variability in the Labrador Sea and the Nordic Seas convection is driven by decadal scale air-sea fluxes in the convective region that can be related to opposite phases of the North Atlantic Oscillation. The Labrador Sea convection is directly linked to the variability in AMOC. Linkages between convection and water mass transformation in the Nordic Seas are more indirect. The Scandinavian Pattern, the third mode of atmospheric variability in the North Atlantic, is a driver of the ocean’s poleward heat transport (PHT), the overall constraint on northern water mass transformation. Increased PHT is both associated with an increased water mass exchange across the GSR, and a stronger AMOC.  相似文献   

14.
Zhaomin Wang 《Climate Dynamics》2005,25(2-3):299-314
The McGill Paleoclimate Model-2 (MPM-2) is employed to study climate–thermohaline circulation (THC) interactions in a pre -industrial climate, with a special focus on the feedbacks on the THC from other climate system components. The MPM-2, a new version of the MPM, has an extended model domain from 90S to 90N, active winds and no oceanic heat and freshwater flux adjustments. In the MPM-2, there are mainly two stable modes for the Atlantic meridional overturning circulation (MOC) under the ‘present-day’ forcing (present-day solar forcing and the pre-industrial atmospheric CO2 level of 280 ppm). The ‘on’ mode has an active North Atlantic deep water formation, while the ‘off’ mode has no such deep water formation. By comparing the ‘off’ mode climate state with its ‘on’ mode analogue, we find that there exist many large differences between the two climate states, which originate from large changes in the oceanic meridional heat transports. By suppressing or isolating each process associated with a continental ice sheet over North America, sea ice, the atmospheric hydrological cycle and vegetation, feedbacks from these components on the Atlantic MOC are investigated. Sensitivity studies investigating the role of varying continental ice growth and sea ice meridional transport in the resumption of the Atlantic MOC are also carried out. The results show that a fast ice sheet growth and an enhanced southward sea ice transport significantly favor the resumption of the Atlantic MOC in the MPM-2. In contrast to this, the feedback from the atmospheric hydrological cycle is a weak positive one. The vegetation-albedo feedback could enhance continental ice sheet growth and thus could also favor the resumption of the Atlantic MOC. However, before the shut-down of the Atlantic MOC, feedbacks from these components on the Atlantic MOC are very weak.  相似文献   

15.
Variations in the Atlantic meridional overturning circulation (AMOC) between 1979 and 2008 are documented using the operational ocean analysis, the Global Ocean Data Assimilation System (GODAS), at the National Centers for Climate Prediction (NCEP). The maximum AMOC at 40°N is about 16?Sv in average with peak-to-peak variability of 3–4?Sv. The AMOC variations are dominated by an upward trend from 1980 to 1995, and a downward trend from 1995 to 2008. The maximum AMOC at 26.5°N is slightly weaker than hydrographic estimates and observations from mooring array. The dominant variability of the AMOC in 20°–65°N (the first EOF, 51% variance) is highly correlated with that in the subsurface temperature (the first EOF, 33% variance), and therefore, with density (the first EOF, 25% variance) in the North Atlantic, and is consistent with the observational estimates based on the World Ocean Database 2005. The dominant variabilities of AMOC and subsurface temperature are also analyzed in the context of possible links with the net surface heat flux, deep convection, western boundary current, and subpolar gyre. Variation in the net surface heat flux is further linked to the North Atlantic Oscillation (NAO) index which is found to lead AMOC variations by about 5?years. Our results indicate that AMOC variations can be documented based on an ocean analysis system such as GODAS.  相似文献   

16.
采用1983—2002年NCEP/NCAR再分析资料和我国660站降水资料,对我国东部季风湿润区夏季水汽收支变化与大气环流和我国降水异常特征的关系进行研究。结果表明:20世纪80—90年代夏季水汽收支时间序列表现出明显的年代际变化增加趋势,与降水时间序列的相关系数为0.71;水汽收支高值、低值年代不仅能够指示季风湿润区经向风的异常变化,还能够指示东亚夏季风的强弱和降水异常变化。合成的水汽输送年代际异常在东亚—西太平洋区表现为4个异常环流,异常水汽通量辐合区位于长江流域及以南地区。水汽收支高值年代,亚洲大陆高纬度地区低压偏弱,大陆表面温度及西太平洋海温偏高,我国东部沿海盛行异常偏南风,低层气流辐合、高层气流辐散强,垂直上升运动强烈;低值年代则相反。合成的经向水汽收支占总收支的71.3%,合成的异常降水量最大达100 mm以上。  相似文献   

17.
Using the Objectively Analyzed air?Csea Fluxes dataset (and also the National Oceanography Centre Southampton Flux Dataset v2.0), we examined both the annual mean climatology and trend of net air?Csea surface heat flux (Q net) for 1984?C2004 over the North Pacific and North Atlantic oceans (10°N?C50°N). The annual mean Q net climatology shows that oceans obtain the positive Q net over much of the North Pacific and North Atlantic oceans. Exceptions are the regions of western boundary currents (WBCs) including the Kuroshio and its extension off Japan and the Gulf Stream off the USA and its extension, where oceans release lots of heat into the atmosphere, mainly ascribed to the large surface turbulent heat loss. The statistically significant negative Q net trends occurred in the WBCs, while the statistically significant positive Q net trends appeared in the central basins of Northern Subtropical Oceans (CNSOs) including the central basin of Northern Subtropical Pacific and the central basin of Northern Subtropical Atlantic. These indentified Q net trends, which are independent of both El Ni?o-Southern Oscillation (ENSO) and ENSO Modoki but closely related to global warming forcing, are predominately due to the statistically significant surface latent heat (LH) trends. Over the WBCs, the positive LH trends are mainly induced by the sea surface temperature increasing, indicating the ocean forcing upon overlying atmosphere. In contrast, over the CNSOs, the negative LH trends are mainly caused by the near-surface air specific humidity increasing, indicative of an oceanic response to overlying atmospheric forcing.  相似文献   

18.
参照Griffies et al.(2009)提出的海洋—海冰耦合模式参考试验(Coordinated Ocean-ice Reference Experiments,COREs),设计了一个800年积分的数值试验,对一个质量严格守恒的压力坐标海洋环流模式(Pressure Coordinate Ocean Model,PCOM1.0)的基本模拟性能进行了评估,并与观测资料和再分析资料进行了对比。结果表明,PCOM1.0模拟的温盐场和基本流场与COREs模式的模拟水平基本接近。其中,模拟的大西洋经向翻转流在45°N附近达到18 Sv(1 Sv=106 m3 s-1),与观测估计值接近;对海表面温度的模拟误差主要集中在北太平洋黑潮区和北大西洋湾流区等中高纬度急流区;模拟的热带太平洋温跃层过于深厚;模拟的经德雷克海峡的体积输送达130 Sv,比大部分COREs模式及再分析资料都更接近于观测估计值。  相似文献   

19.
Abstract

A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection.

Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition.

When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water.

Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (~3% in our model) the projected warming by the year 2100.  相似文献   

20.
将8个主要平衡分潮加入到耦合模式中,对比研究潮汐对北大西洋模拟影响。由于潮汐的引入,模式模拟SST在北大西洋中纬度区域偏差显著减小,高纬度区域SST降温明显。SST模拟的改变使潮汐试验的海表净热通量模拟误差下降了约30%,但高纬度海冰显著增加。模式中引入潮汐对北大西洋上层环流,尤其是西边界流的路径模拟改进显著,这是SST及海表净热通量模拟改变的主要原因。同时,北大西洋上层和深层西边界流在潮汐的作用下,都表现出环流减弱的特点,这也使得大西洋经向翻转环流在26.5°N处上层2 km的输送减弱,与观测数据更为接近。较弱的大西洋经向翻转环流导致海洋热量在中低纬度聚集而无法输送到高纬度区域,这是造成潮汐试验模拟的海温在中低纬度偏高、高纬度偏低的原因,较弱的热输送也同时导致了潮汐试验中北半球海冰面积增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号