首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在提取地下水地震异常信息的过程中,通常都要扣除气压和潮汐的影响。然而,一些研究结果表明,用简单的相关分析和回归分析很难消除水位中的气压效应。原因是气压和水位的关系非常复杂。为了更为有效地对气压效应进行改正,本文选取了北川井、丽江井和雎宁井作为研究对象,利用其水位、气压,及理论重力固体潮的分钟值资料,研究这3个物理量在时域和频域的相关性,从而为气压效应的改正提供一定的依据。  相似文献   

2.
计算井水位对固体潮和气压滞后响应的新方法   总被引:4,自引:0,他引:4  
提出了一种计算井水位对固体潮和气压滞后响应的新方法.利用杜得森潮汐展开和泰勒级数展开,导出了计算井水位固体潮系数和气压系数以及滞后时间公式,并给出了考虑滞后影响的井水位固体潮和气压改正公式.利用该法处理了鲁03井水位和气压观测资料,求出该井水位固体潮系数为1.8mm/10~_(-3),水位对固体潮响应的滞后时间为1.53小时,气压系数为6.4mm/hPa,滞后时间为1.5小时。与以前的一般回归分析方法相比,改正后的水位中误差明显减小,改正效果较好。  相似文献   

3.
水位随机气压效率的地震前兆异常研究   总被引:1,自引:0,他引:1  
对在大气压力的随机气压变化作用下深井水位变化特点进行分析研究,在前人工作的基础上,提出可以利用大气压力的随机气压变化进行水位气压效率的计算。该方法较以往各种计算方法排除干扰能力强,计算方便,地震前兆异常突出,是水位气压效率地震前兆预报方法中能够应用于日常地震监测的方法之一。  相似文献   

4.
深井水位气压系数前兆信息探索   总被引:1,自引:0,他引:1  
张元胜 《内陆地震》1997,11(1):57-61
以深井水位气压效应的形成机制为出发点,阐述了地震前井孔气压系数异常变化的物理依据,并以新04井为例,对其震前水位气压系数的异常变化进行了探索。  相似文献   

5.
小波分析在井水位的气压和潮汐改正中的应用   总被引:2,自引:0,他引:2  
晏锐  黄辅琼  陈颙 《中国地震》2007,23(2):204-210
本文将小波分析方法应用于地下水位观测资料的气压和潮汐改正中。该方法利用小波将气压观测和理论重力固体潮资料分解为不同频段的时间序列,用最小二乘法求出气压和固体潮不同频段的响应系数,以消除气压和固体潮对水位的影响。用该方法计算的结果与一般线形回归分析方法得到的结果进行对比,发现该方法能更有效地分析和消除气压和固体潮对地下水位的影响。小波分解在井水位气压、潮汐改正中的应用以波动理论和振动理论为基础,它不仅考虑了观测资料的频率域特性,而且还能直接在时间域内计算出不同频率范围的气压系数和潮汐系数,具有明确的物理意义。  相似文献   

6.
一,气压变化引起水位观测值变化川—12井自八一年六月投入观测以来的资料表明,气压变化明显引起水位升降,这就是所谓的“气压效应”。气压增大,水位下降;气压减小,水位上升,即气压与水位之间存在负相关。关于气压影响水位的机理,目前认为,气压作用子井周地面,经地下介质传至含水层并转嫁给含水岩层骨架和孔隙水,同时气压直接作用于井中液面,孔隙水所获得的应  相似文献   

7.
读者信箱     
《地震战线》编辑部: 您刊1980年第一期发表的《深井水位动态分析》一文,对我们工作很有帮助,但文中有几个问题还没有完全理解,请予进一步说明。 1.“水位-气压改正表”是怎样做出来的? 2.改正表与回归方程y=1.38x+1004.4是什么关系?  相似文献   

8.
对忻州XZ-2井气压系数的确定、排除气压干扰的方法进行了探讨,并收到了较好的处理效果。研究表明,该井孔排除气压干扰后的正常水位动态为一条在稳定水位背景上叠加出现的水位固体潮变化曲线。为识别水位异常,找到了判断依据。  相似文献   

9.
刘裕生  杨林根 《地震学刊》1994,(3):27-29,16
本文对巢湖地区三口地震观测深井的观测数据进行了分析、计算、求出了气压订正后深井静水位值与理论固体潮值相关最高时的气压系数,由于该值是采用优选法的方法确定的,所以称之为优选气 系数。优选气压系数反映了井孔本身系统对水位变化的放大性能,其本质是通过井孔系统对大气压和地应力这对矛盾运动结果的综合反映。优选气压系数对排除气压对水位的干扰,提取震兆异常变化具有一定的应用价值。  相似文献   

10.
分析研究了银川基准台重力非潮汐变化与气压的相关性,结果表明重力非潮汐变化与气压存在较好的负相关。利用两者间高度相关性,对重力潮汐变化、非潮汐变化进行了气压改正,改正前后重力潮汐参数的精度没有显著变化,非潮汐变化漂移稳定,为捕捉地震前兆异常提供了有力的帮助。  相似文献   

11.
天然气在开发过程中,储层有效压力和含气饱和度均会发生变化,研究有效压力和含气饱和度的变化对地震响应特征的影响,在基于时移地震的剩余气分布预测研究中具有重要意义。天然气和石油的声学性质有着明显的差异,油藏时移地震的研究成果不能直接应用于气藏,因此需要开展气藏的时移地震研究。利用Shapiro模型表征干岩石弹性模量随有效压力的变化,借助Batzle-Wang方程描述流体速度随压力的变化关系,联合Gassmann理论进行流体替代,表征饱和流体岩石速度随含气饱和度的变化,建立了饱和流体岩石速度随有效压力和饱和度变化的岩石物理模型。基于该模型,对不同含气饱和度和不同有效压力下的气藏储层模型进行了多波时移地震叠前振幅变化(AVO)模拟。结果表明多波时移地震AVO技术可以有效地区分有效压力变化和含气饱和度变化,为进一步开展气藏多波时移地震流体监测提供了理论参考依据。   相似文献   

12.
Kela 2 Gas Field, with high formation pressure (74.35MPa), high pressure coefficient (2.022) and difficulty of potential test and evaluation, is the largest integrated proved dry gas reservoir in China so far and the principal source for West-East Gas Development Project. In order to correctly evaluate the elastic-plastic deformation of rocks caused by the pressure decline during production, some researches, as the experiment on reservoir sensitivity to stress of gas filed with abnormal high pressure, are made. By testing the rock mechanic properties, porosities and permeabilities at different temperature and pressure of 342 core samples from 5 wells in this area, the variations of petro-physical properties at changing pressure are analyzed, and the applicable inspection relationship is concluded. The average productivity curve with the reservoir sensitivity to stress is plotted on the basis of the research, integrated with the field-wide productivity equation. The knowledge lays a foundation for the gas well productivity evaluation in the field and the gas field development plan, and provides effective techniques and measures for basic research on the development of similar gas fields.  相似文献   

13.
When an open well is installed in an unsaturated zone, gas will flow to/from the well depending on the pressure difference between the well and the surrounding media. This process is called barometric pumping and the well is called a barometric pumping well (BPW). Understanding subsurface gas pressure distribution and gas flow rate to/from a BPW is indispensable to optimize passive soil vapor extraction. This study presents a 2-D semi-analytical solution to calculate the subsurface gas pressure and gas flow rate to/from a BPW with and without a check valve. The problem is conceptualized as a mixed-type boundary value problem. The solution for pumping without a check valve is used to analyze the behavior of the radius of influence (ROI). Results show that ROI is time-dependent. It increases with radial gas permeability and decreases with vertical gas permeability. Field application of the solution without a check valve demonstrates the high accuracy of the developed solution.  相似文献   

14.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

15.
The effectiveness of gas accumulation processes is controlled by several main geological factors in-cluding charging force,features of gas conduit,sealing properties of caprock,etc. Based on the analysis and statistics of the large-medium size gas accumulations in China,the main parameters,in-cluding the excess pressure difference between the source rock and reservoir bed,the area coefficient of the gas conduit,and the thickness or displacement pressure of caprock,and the criteria for the as-sessment of gas accumulation processes have been established. Using the parameters and the criteria above,the effectiveness of gas accumulation processes in the Kuqa depression was quantitatively evaluated. By integrating the parameters of the excess pressure difference between the source rock and reservoir bed,the area coefficient of fault conduit system,and the caprock thickness in gas charging period,a comprehensive assessment of the effectiveness of gas accumulation in the Kuqa depression has been made. The result reveals that the Tubei-Dawan area,the Central Kelasu area and the Dongqiu-Dina area are three highly-effective areas for gas accumulation in the Kuqa depression.  相似文献   

16.
副高的地气耦合效应   总被引:5,自引:0,他引:5  
中国是季风气候,每年西太平洋副高要北移和南退。在它的边缘上降大雨,有时会致洪。本指出这种副高压在地面上时,在其边缘上地层会产生引张环。此环内地下水铁于逸出,可迭加在绕副高边缘运移的水汽中,如有北方冷空气南下相遇,则增加降雨强度。另外,引张环中还有温室气体逸出,可使低层大气增温,这有助于副高边缘区降大雨致洪。这就是副高的地-气耦合效应。如果引张环和外侧有地震活动,则地下活动相对剧烈,副高的地-气耦合效应加强,同时也有利于副高向地震活动区移动。  相似文献   

17.
如何提高煤层气渗透率是目前煤层气开采研究中的重要课题。基于煤层瓦斯渗流规律数学模型,利用COMSOL Multiphysics软件,对流-固-热耦合条件下的非等温煤层气解吸、渗流变化规律进行了数值模拟。结果表明,在注热条件下,煤层气渗流压力随着温度的增加而下降,且下降速度加剧,压力差越大,气体从高压区域流向低压区域的渗流速度越快。气体在煤层中径向流向井口,井口附近压力的梯度增大,气体渗流速度较快;在未受到加热影响的区域,煤层气不受外加热量影响,煤层气解吸速率保持不变;注热后煤层温度升高,可以加快煤层气渗流速度、提高渗透率、增加煤层气产量。研究成果可为煤层中注热开采煤层气的工程实践提供相应的理论依据。  相似文献   

18.
The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas reservoir in the Miocene Huangliu Formation is up to 54.6 MPa(pressure coefficient=1.91) and the temperature is as high as 143°C(geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type II2-III kerogens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C1 ranging from -30.76‰ to -37.52‰ and δ13C2 ranging from -25.02‰ to -25.62‰. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to undercompaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that(1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas;(2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and(3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.  相似文献   

19.
利用新疆呼图壁地下储气库地表盖层由13个点位组成的形变监测网的前5期GPS观测资料,研究地下储气库注采过程中地表盖层的变形响应。通过获取地下储气库运行过程中地表盖层形变的三维时间序列,并结合井口压力数据,区分地下储气库在不同过程中的变形信号。研究结果表明,地表盖层在储气库注采过程中水平方向上存在明显的“呼吸效应”,储气库每MPa气井压力变化在注、采周期内对地表变形造成的影响在水平方向上分别达到1.02、1.24mm,垂直方向分别达到-1.11、0.86mm。  相似文献   

20.
煤岩吸附二氧化碳气体的CT实验研究   总被引:1,自引:0,他引:1  
利用工业CT技术及应变测量研究不同气压下煤岩的二氧化碳气体吸附性质。研究发现:煤样的应变随吸附时间和气体压力的增加而增加,且在不同方向是不同的,吸附气体导致煤样孔隙率增加;煤样CT图像的灰度均值和灰度标准差随吸附时间和气体压力的增长都表现出增加的趋势。结果表明:吸附二氧化碳导致煤样总体发生膨胀变形,这为吸附提供更多的孔隙表面积而使吸附气体量增加,含气煤样的密度也因此而增大;气体吸附导致的煤样密度均值增加的效应大于体积膨胀导致的煤样密度均值减小的效应;吸附使煤样内部物质分布不均匀程度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号