首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stellar velocity dispersion in narrow-line Seyfert 1 galaxies   总被引:1,自引:0,他引:1  
Several authors have recently explored, for narrow-line Seyfert 1 galaxies (NLS1s), the relationship between black hole mass ( M BH) and stellar velocity dispersion (σ*). Their results are more or less in agreement and seem to indicate that NLS1s fill the region below the fit obtained by Tremaine et al., showing a range of σ* similar to that of Seyfert 1 galaxies, and a lower M BH. Until now, the [O  iii ] width has been used in place of the stellar velocity dispersion, but some indications have begun to arise against the effectiveness of the gaseous kinematics in representing the bulge potential, at least in NLS1s. Bian & Zhao have stressed the urgency of producing true σ* measurements. Here, we present new stellar velocity dispersions obtained through direct measurements of the Ca  ii absorption triplet (∼8550 Å) in the nuclei of eight NLS1 galaxies. The resulting σ* values and a comparison with σ[O III] confirm our suspicion that [O  iii ] typically overestimates the stellar velocity dispersion. We demonstrate that NLS1s follow the   M BH–σ*  relation as Seyfert 1, quasars and non-active galaxies.  相似文献   

2.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

3.
Using results from structural analysis of a sample of nearly 1000 local galaxies from the Sloan Digital Sky Survey, we estimate how the mass in central black holes is distributed amongst elliptical galaxies, classical bulges and pseudo-bulges, and investigate the relation between their stellar masses and central stellar velocity dispersion σ. Assuming a single relation between elliptical galaxy/bulge mass, M Bulge, and central black hole mass, M BH, we find that  55+8−4  per cent of the mass in black holes in the local universe is in the centres of elliptical galaxies,  41+4−2  per cent in classical bulges and  4+0.9−0.4  per cent in pseudo-bulges. We find that ellipticals, classical bulges and pseudo-bulges follow different relations between their stellar masses and σ, and the most significant offset occurs for pseudo-bulges in barred galaxies. This structural dissimilarity leads to discrepant black hole masses if single   M BH– M Bulge  and   M BH–σ  relations are used. Adopting relations from the literature, we find that the   M BH–σ  relation yields an estimate of the total mass density in black holes that is roughly 55 per cent larger than if the   M BH– M Bulge  relation is used.  相似文献   

4.
We suggest a new way to establish the relation between the electron temperature t 3 within the [O  iii ] zone and the electron temperature t 2 within the [O  ii ] zone in high-metallicity  (12 + log(O/H) > 8.25)  H  ii regions. The   t 2– t 3  diagram is constructed by applying our method to a sample of 372 H  ii regions. We find that the correlation between t 2 and t 3 is tight and can be approximated by a linear expression. The new   t 2– t 3  relation can be used to determine t 2 and accurate abundances in high-metallicity H  ii regions with a measured t 3. It can also be used in conjunction with the ff relation for the determination of t 3 and t 2 and oxygen abundances in high-metallicity H  ii regions, where the [O  iii ]λ4363 auroral line is not detected. The derived   t 2– t 3  relation is independent of photoionization models of H  ii regions.  相似文献   

5.
Measuring the black hole masses of high-redshift quasars   总被引:1,自引:0,他引:1  
A new technique is presented for determining the black hole masses of high-redshift quasars from optical spectroscopy. The new method utilizes the full-width at half-maximum (FWHM) of the low-ionization Mg  ii emission line and the correlation between the broad-line region (BLR) radius and the continuum luminosity at 3000 Å. Using archival ultraviolet (UV) spectra it is found that the correlation between BLR radius and 3000-Å luminosity is tighter than the established correlation with 5100-Å luminosity. Furthermore, it is found that the correlation between BLR radius and 3000-Å continuum luminosity is consistent with a relation of the form   R BLR∝λ L 1/2λ  , as expected for a constant ionization parameter. Using a sample of objects with broad-line radii determined from reverberation mapping it is shown that the FWHM of Mg  ii and Hβ are consistent with following an exact one-to-one relation, as expected if both Hβ and Mg  ii are emitted at the same radius from the central ionizing source. The resulting virial black hole mass estimator based on rest-frame UV observables is shown to reproduce black hole mass measurements based on reverberation mapping to within a factor of 2.5 (1σ). Finally, the new UV black hole mass estimator is shown to produce identical results to the established optical (Hβ) estimator when applied to 128 intermediate-redshift  (0.3 < z < 0.9)  quasars drawn from the Large Bright Quasar Survey and the radio-selected Molonglo quasar sample. We therefore conclude that the new UV virial black hole mass estimator can be reliably used to estimate the black hole masses of quasars from   z ∼ 0.25  through to the peak epoch of quasar activity at   z ∼ 2.5  via optical spectroscopy alone.  相似文献   

6.
We study the structure and evolution of 'quasi-stars', accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate on to the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass,   M *+ M BH≈ M *  . This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasi-stars. We show that the photospheric temperature of the envelope scales as   T ph∝ M −2/5BH M 7/20*  , and decreases with time while the black hole mass increases. Once   T ph < 104 K  , the photospheric opacity drops precipitously and T ph hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hydrostatic solution for the convective envelope exists. For metal-free (Population III) opacities, this limiting temperature is approximately 4000 K. After a quasi-star reaches this limiting temperature, it is rapidly dispersed by radiation pressure. We find that black hole seeds with masses between 103 and  104 M  could form via this mechanism in less than a few Myr.  相似文献   

7.
In this paper, the sizes of the broad emission line regions (BLRs) and black hole (BH) masses of double-peaked broad low-ionization emission line emitters (DBP emitters) are compared using different methods: virial BH masses versus BH masses from stellar velocity dispersions, the size of BLRs from the continuum luminosity versus the size of BLRs from the accretion disc model. First, the virial BH masses of DBP emitters estimated by the continuum luminosity and linewidth of broad Hβ are about six times (a much larger value, if including another DBP emitters, of which the stellar velocity dispersions are traced by the linewidths of narrow emission lines) larger than the BH masses estimated from the relation   M BH–σ  which is a more accurate relation to estimate BH masses. Second, the sizes of the BLRs of DBP emitters estimated by the empirical relation of   R BLR– L 5100 Å  are about three times (a much larger value, if including another DBP emitters, of which the stellar velocity dispersions are traced by the linewidths of narrow emission lines) larger than the mean flux-weighted sizes of BLRs of DBP emitters estimated by the accretion disc model. The higher electron density of BLRs of DBP emitters would be the main reason which leads to smaller size of BLRs than the predicted value from the continuum luminosity.  相似文献   

8.
We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047 – 2808. We detect both [O III ] lines λλ4959, 5007 near ∼ 2.3 μm, confirming the redshift of the lensed source as z  = 3.595. The Lyα line is redshifted relative to the [O III ] line by 140 ± 20 km s−1. Similar velocity shifts have been seen in nearby starburst galaxies. The [O III ] line is very narrow, 130 km s−1 FWHM. If the ring is the image of the centre of a galaxy, the one-dimensional stellar velocity dispersion σ = 55 km s−1 is considerably smaller than the value predicted by Baugh et al. for the somewhat brighter Lyman-break galaxies. The Lyα line is significantly broader than the [O III ] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z  = 0.485 is 250 ± 30 km s−1. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and with the value estimated from the D n −σ relation.  相似文献   

9.
We investigate the correlation between the supermassive black holes (SMBHs) mass ( M bh) and the stellar velocity dispersion  (σ*)  in two types of host galaxies: the early-type bulges (disc galaxies with classical bulges or elliptical galaxies) and pseudo-bulges. In the form  log ( M bh/M) =α+β log (σ*/200 km s−1)  , the best-fitting results for the 39 early-type bulges are the slope  β= 4.06 ± 0.28  and the normalization  α= 8.28 ± 0.05  ; the best-fitting results for the nine pseudo-bulges are  β= 4.5 ± 1.3  and  α= 7.50 ± 0.18  . Both relations have intrinsic scatter in  log  M bh  of ≲0.27 dex. The   M bh–σ*  relation for pseudo-bulges is different from the relation in the early-type bulges over the 3σ significance level. The contrasting relations indicate the formation and growth histories of SMBHs depend on their host type. The discrepancy between the slope of the   M bh–σ*  relations using different definition of velocity dispersion vanishes in our sample, a uniform slope will constrain the coevolution theories of the SMBHs and their host galaxies more effectively. We also find the slope for the 'core' elliptical galaxies at the high-mass range of the relation appears steeper  (β≃ 5–6)  , which may be the imprint of their origin of dissipationless mergers.  相似文献   

10.
This is the third paper of a series devoted to the study of the global properties of Joguet's sample of 79 nearby galaxies observable from the southern hemisphere, of which 65 are Seyfert 2 galaxies. We use the population synthesis models of Paper II to derive 'pure' emission-line spectra for the Seyfert 2 galaxies in the sample, and thus explore the statistical properties of the nuclear nebular components and their relation to the stellar populations. We find that the emission-line clouds suffer substantially more extinction than the starlight, and we confirm the correlations between stellar and nebular velocity dispersions and between emission-line luminosity and velocity dispersions, although with substantial scatter. Nuclear luminosities correlate with stellar velocity dispersions, but Seyferts with conspicuous star-forming activity deviate systematically towards higher luminosities. Removing the contribution of young stars to the optical continuum produces a tighter and steeper relation,   L ∝σ4  , consistent with the Faber–Jackson law.
Emission-line ratios indicative of the gas excitation such as [O  iii ]/Hβ and [O  iii ]/[O  ii ] are statistically smaller for Seyferts with significant star formation, implying that ionization by massive stars is responsible for a substantial and sometimes even a dominant fraction of the Hβ and [O  ii ] fluxes. We use our models to constrain the maximum fraction of the ionizing power that can be generated by a hidden active galactic nucleus (AGN). We correlate this fraction with classical indicators of AGN photoionization (i.e. X-ray luminosity and nebular excitation), but find no significant correlations. Thus, while there is a strong contribution of starbursts to the excitation of the nuclear nebular emission in low-luminosity Seyferts, the contribution of the hidden AGN remains elusive even in hard X-rays.  相似文献   

11.
We present a study of the X-ray emission from the nuclei of galaxies observed in the core of the Perseus cluster in a deep exposure with Chandra . Point sources are found coincident with the nuclei of 13 early-type galaxies, as well as the central galaxy NGC 1275. This corresponds to all galaxies brighter than M B > −18 in the Chandra field. All of these sources have a steep power-law spectral component and four have an additional thermal component. The unabsorbed power-law luminosities in the 0.5–7.0 keV band range from 8 × 1038 to 5 × 1040 erg s−1. We find no simple correlations between the K -band luminosity, or the FUV and NUV AB magnitudes of these galaxies and their X-ray properties. We have estimated the black hole masses of the nuclei using the K -band   M BH– L K bol  relation and again find no correlation between black hole mass and the X-ray luminosity. Bondi accretion on to the black holes in the galaxies with minihaloes should make them much more luminous than observed.  相似文献   

12.
In a former paper, we have presented spectra of 64 active, nine normal and five starburst galaxies in the region around the near-infrared calcium triplet (CaT) absorption lines and the [S  iii ]λ9069 line. In the present paper, we analyse the CaT strength ( W CaT) and kinematical products derived in that study, namely stellar  (σ)  and ionized gas (σgas) velocity dispersions. Our main results may be summarized as follows. (1) Type 2 Seyfert galaxies show no sign of dilution in W CaT with respect to the values spanned by normal galaxies, even when optical absorption lines such as the Ca  ii K band at 3933 Å are much weaker than in old, bulge-like stellar populations. (2) The location of type 2 Seyfert galaxies in the   W CaT– W CaK  plane is consistent with evolutionary synthesis models. The implication is that the source responsible for the dilution of optical lines in these active galactic nuclei (AGN) is a young stellar population, rather than an AGN featureless continuum, confirming the conclusion of the pioneer study of Terlevich, Díaz & Terlevich. (3) In type 1 Seyfert galaxies, both   W [S  iii ]  and W CaT tend to be diluted due to the presence of a non-stellar component, in agreement with the unification paradigm. (4) A comparison of  σ  with σgas (obtained from the core of the [S  iii ] emitting line) confirms the existence of a correlation between the typical velocities of stars and clouds of the narrow line region. The strength and scatter around this correlation are similar to those previously obtained from the [O  iii ]λ5007 linewidth.  相似文献   

13.
We demonstrate that the luminosity function of the recently detected population of actively star-forming galaxies at redshift z  = 3 and the B -band luminosity function of quasi-stellar objects (QSOs) at the same redshift can both be matched with the mass function of dark matter haloes predicted by standard variants of hierarchical cosmogonies for lifetimes of optically bright QSOs anywhere in the range 106 to 108 yr. There is a strong correlation between the lifetime and the required degree of non-linearity in the relation between black hole and halo mass. We suggest that the mass of supermassive black holes may be limited by the back-reaction of the emitted energy on the accretion flow in a self-gravitating disc. This would imply a relation of black hole to halo mass of the form M bh ∝  v 5halo ∝  M 5/3halo and a typical duration of the optically bright QSO phase of a few times 107 yr. The high integrated mass density of black holes inferred from recent black hole mass estimates in nearby galaxies may indicate that the overall efficiency of supermassive black holes for producing blue light is smaller than previously assumed. We discuss three possible accretion modes with low optical emission efficiency: (i) accretion at far above the Eddington rate, (ii) accretion obscured by dust, and (iii) accretion below the critical rate leading to an advection-dominated accretion flow lasting for a Hubble time. We further argue that accretion with low optical efficiency might be closely related to the origin of the hard X-ray background and that the ionizing background might be progressively dominated by stars rather than QSOs at higher redshift.  相似文献   

14.
We report on the analysis of the photometric and spectroscopic properties of a sample of 29 low-redshift  ( z < 0.6)  QSOs for which both Hubble Space Telescope ( HST ) WFPC2 images and ultraviolet HST   FOS spectra are available. For each object we measure the R -band absolute magnitude of the host galaxy, the C  iv (1550 Å) linewidth and the 1350 Å continuum luminosity. From these quantities we can estimate the black hole (BH) mass through the   M BH– L bulge  relation for inactive galaxies, and from the virial method based on the kinematics of the regions emitting the broad-lines. The comparison of the masses derived from the two methods yields information on the geometry of the gas emitting regions bound to the massive BH. The cumulative distribution of the linewidths is consistent with that produced by matter laying in planes with inclinations uniformly distributed between ∼10° and ∼50°, which corresponds to a geometrical factor   f ∼ 1.3  . Our results are compared with those of the literature and discussed within the unified model of active galactic nuclei.  相似文献   

15.
We extend our previous analysis which used generalized luminosity functions (GLFs) to predict the number of quasars and galaxies in low-radio-frequency-selected samples as a function of redshift, radio luminosity, narrow-emission-line luminosity and type of unified scheme. Our extended analysis incorporates the observed submillimetre (850-μm) flux densities of radio sources, employs a new method which allows us to deal with non-detections, and focuses on the high-luminosity population. First, we conclude that the submillimetre luminosity L 850 of low-frequency-selected radio sources is correlated with the bolometric luminosity L bol of their quasar nuclei via an approximate scaling relation   L 850∝ L 0.7±0.2bol  . Secondly, we conclude that there is quantitative evidence for a receding-torus-like physical process for the high-luminosity population within a two-population unified scheme for radio sources; this evidence comes from the fact that radio quasars are brighter in both narrow emission lines and submillimetre luminosity than radio galaxies matched in radio luminosity and redshift. Thirdly, we note that the combination of a receding-torus-like scheme and the assumption that the observed submillimetre emission is dominated by quasar-heated dust yields a scaling relation   L 850∝ L 1/2bol  which is within the errors of that determined here for radio-selected quasars, and consistent with that inferred for radio-quiet quasars.  相似文献   

16.
An analysis of the X-ray variability of the low-luminosity Seyfert nucleus NGC 4395, based on a long XMM–Newton observation, is presented. The power spectrum shows a clear break from a flat spectrum  (α≈ 1)  to a steeper spectrum  (α≈ 2)  at a frequency   f br= 0.5–3.0 × 10−3 Hz  , comparable to the highest characteristic frequency found previously in a Seyfert galaxy. This extends the measured   M BH− f br  values to lower M BH than previous studies of Seyfert galaxies, and is consistent with an inverse scaling of variability frequency with black hole mass. The variations observed are among the most violent seen in an active galactic nuclei to date, with the fractional rms amplitude  ( F var)  exceeding 100 per cent in the softest band. The amplitude of the variations seems intrinsically higher in NGC 4395 than most other Seyfert galaxies, even after accounting for the differences in characteristic frequencies. The origin of this difference is not clear, but it is unlikely to be a high accretion rate (   L / L Edd≲ 20  per cent for NGC 4395). The variations clearly follow the linear rms–flux relation, further supporting the idea that this is a ubiquitous characteristics of accreting black holes. The variations are highly coherent between different energy bands with any frequency-dependent time delay limited to ≲1 per cent.  相似文献   

17.
18.
Low-frequency radio surveys are ideal for selecting orientation-independent samples of extragalactic sources because the sample members are selected by virtue of their isotropic steep-spectrum extended emission. We use the new 7C Redshift Survey along with the brighter 3CRR and 6C samples to investigate the fraction of objects with observed broad emission lines – the 'quasar fraction'– as a function of redshift and of radio and narrow-emission-line luminosity. We find that the quasar fraction is more strongly dependent upon luminosity (both narrow-line and radio) than it is on redshift. Above a narrow [O  ii ] emission-line luminosity of log10( L [O  ii ]/W)≳35 [or radio luminosity log10( L 151/W Hz−1 sr−1)≳ 26.5], the quasar fraction is virtually independent of redshift and luminosity; this is consistent with a simple unified scheme with an obscuring torus with a half-opening angle θ trans≈53°. For objects with less luminous narrow lines, the quasar fraction is lower. We show that this is not due to the difficulty of detecting lower luminosity broad emission lines in a less luminous, but otherwise similar, quasar population. We discuss evidence which supports at least two probable physical causes for the drop in quasar fraction at low luminosity: (i) a gradual decrease in θ trans and/or a gradual increase in the fraction of lightly reddened (0≲ A V ≲5) lines of sight with decreasing quasar luminosity; and (ii) the emergence of a distinct second population of low-luminosity radio sources which, like M87, lack a well-fed quasar nucleus and may well lack a thick obscuring torus.  相似文献   

19.
We present near-infrared spectra of seven radio-loud quasars with a median redshift of 2.1, five of which were previously known to have Ly α nebulae. Extended [O  iii ] λ 5007 and H α emission are evident around six objects, at the level of a few times 10−16 erg cm−2 arcsec−2 s−1 within ≃2 arcsec of the nucleus (≡16 kpc in the adopted cosmology). Nuclear [O  ii ] λ 3727 is detected in three of the five quasars studied at this wavelength and clearly extended in one of them.
The extended [O  iii ] tends to be brighter on the side of the nucleus with the stronger, jet-like radio emission, indicating at least that the extranuclear gas is distributed anisotropically. It is also typically redshifted by several hundred km s−1 from the nuclear [O  iii ], perhaps because of the latter being blueshifted from the host galaxy's systemic velocity. Alternatively, the velocity shifts could be due to infall (which is suggested by linewidths ∼1000 km s−1 FWHM) in combination with a suitable dust geometry. Ly α /H α ratios well below the case B value suggest that some dust is present.
Photoionization modelling of the [O  iii ]/[O  ii ] ratios in the extended gas suggests that its pressure is around or less than a few times 107 cm−3 K; any confining intracluster medium is thus likely to host a strong cooling flow. A comparison with lower redshift work suggests that there has been little evolution in the nuclear emission-line properties of radio-loud quasars between redshifts 1 and 2.  相似文献   

20.
Using recently published estimates — based on high spatial resolution spectroscopy — of the mass M BH of nuclear black holes for a sample of nearby galaxies, we explore the dependence of galaxy nucleus emissivity at various wavelengths on M BH. We confirm an almost linear scaling of the black hole mass with the baryonic mass of the host spheroidal galaxy. A remarkably tight relationship is also found with both nuclear and total radio centimetric flux, with a very steep dependence of the radio flux on M BH ( P  ∝  M 2.5BH). The high-frequency radio power is thus a very good tracer of a supermassive black hole, and a good estimator of its mass. This, together with the lack of significant correlations with the low-energy X-ray and far-IR flux, supports the view that advection-dominated accretion is ruling the energy output in the low accretion rate regime. Using the tight dependence of total radio power on M BH and the rich statistics of radio emission of galaxies, we derive an estimate of the mass function of remnants in the nearby Universe. This is compared with current models of quasar and active galactic nucleus (AGN) activity and of the origin of the hard X-ray background (HXRB). As for the former, continuous long-lived AGN activity is excluded by the present data with high significance, whereas the assumption of a short-lived, possibly recurrent, activity pattern gives remarkable agreement. The presently estimated black hole mass function also implies that the HXRB has been produced by a numerous population (∼ 10−2 Mpc−3) of moderately massive ( M BH ∼ 107 M⊙) black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号