首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
亚洲特提斯域油气聚集地质特征   总被引:2,自引:0,他引:2  
特提斯域含油气性,特别是亚洲特提斯域油气聚集地质特征,举世瞩目。本文从亚洲特提斯域地质演化、构造单元划分着手,讨论油气地理分布、油气分布与盆地类型、油气盆地与沉积环境、油气分布与盆地保存的特点,进而对亚洲特提斯域油气富集基本因素进行总结。亚洲特提斯域含油气盆地是特提斯洋形成、演化、造山和消亡过程的沉积-构造产物,其盆地成因和赋存的油气具有特提斯固有的特色。亚洲特提斯域油气地理上主要分布于西亚段南带,其次为西亚段北带、东南亚段中带,再次为中亚段。分析发现,亚洲特提斯油气分布,就盆地类型而言,主要与前陆盆地、克拉通边缘盆地相关;就成烃物质的沉积-构造环境而言,多位于古赤道与45°古纬度之间,盆地形态主要与台地、环形坳陷、线形坳陷沉积-构造环境相关。亚洲特提斯域油气分布与盆地保存关系极为密切,盆地保存是盆地油气评价的先决条件。文章把亚洲特提斯域油气富集基本因素归纳为两点,一是盆地演化过程中具备广阔平缓、长期保持被动陆缘沉积-构造环境,二是盆地演化末期直至现今保持沉积物被埋藏、保存的状况。  相似文献   

2.
南方地质条件有四方面的特点:碳酸盐岩区与特提斯域有关,具有良好的含油气前景;叠置在碳酸盐岩区上的南、北两大前陆盆地带,对古生界原型盆地烃源岩的演化、油气藏形成和保存起到重要作用;南方海相地层具有丰富的烃源岩;后期多旋回构造运动,使南方海相油气系统变得十分复杂。南方油气选区评价的关键是保存条件,在含油气系统中“保存单元”是优选勘探目标的重要依据。“九五”期间,一要主攻中、下扬子区,获重大突破;二要积极做好滇黔桂地区三个盆地(南盘江盆地、楚雄盆地、十万大山盆地)的预探;三要进一步搞好区域评价。  相似文献   

3.
青藏高原重点沉积盆地油气勘探前景展望   总被引:5,自引:2,他引:3  
青藏高原在构造位置上处于特提斯构造域东段,是我国海相三叠系-新近系分布面积最大、最集中的地区.其上发育中一新生代各类沉积残留盆地,其中陆相盆地20个,海相盆地7个.通过与特提斯构造域石油地质条件的初步对比,认识到青藏高原虽作为其东段的主体,两者在构造演化上密切相关,但在含油气盆地的特征上存在较大的差别.结合新一轮油气资源评价结果,认为羌塘盆地为该区首选勘探目标,盆地中部为最有利的油气远景区,并从中筛选出3个重点区块作为近期勘探目标:托纳木-笙根区块、隆鄂尼-昂达尔错区块及土门达卓玛区块,同时指出措勤盆地勘探前景次之.  相似文献   

4.
特提斯域可划分为北、中、南三个带。①北带介于原始特提斯缝合带至古特提斯缝合带之间,它是劳亚大陆在古生代时的拼合增生部分;②中带介于古特提斯缝合带和新特提斯缝合带之间,它是中生代时海槽洋盆与大陆碎块或海台交替并最终拼合的地带,现今则构成阿尔卑斯—喜马拉雅褶皱系;③南带则是新特提斯发育过程中冈瓦纳大陆北缘的大陆架区。认为中带是严格意义上的特提斯域,北带和南带则可分别视为劳亚大陆和冈瓦纳大陆的大陆架被海侵的部分。将特提斯域在东半球的部分自西向东划分为欧洲—北非段、西亚段、中亚段和东南亚段四段。各带和各段的油气分布差别极大。所谓特提斯域油气特别丰富的说法是有条件的,其主要依据是南带中东油区占有世界1/3以上的油气探明储量,而一旦将中东和北非划归为南方的冈瓦纳域,则上述说法无法成立。如果再将北带的年轻地台区划归北方的劳亚大陆域,那么,剩下来的严格意义上的特提斯域则反而为一条贫油气带。中国地处劳亚、冈瓦纳、太平洋三大构造域的交汇处,地质演化相当复杂,不能以“特提斯域油气丰富”的笼统概念来评价我国的含油气潜力。各地质单元的盆地保持特性如何,特别是第三纪以来是否仍为盆地,才是对油气聚集的潜力起决定性作用的控制因素。  相似文献   

5.
特提斯域的演化和油气分布   总被引:3,自引:0,他引:3  
特提斯域可划分为北、中、南三个带。①北带介于原始特提斯缝合带至古特提斯缝合带之间,它是劳亚大陆在古生代时的拼合增生部分;②中带介于古特提斯缝合带和新特提斯缝合带之间,它是中生代时海槽洋盆与大陆碎块或海台交替并最终拼合的地带,现今则构成阿尔卑斯一喜马拉雅褶皱系;③南带则是新特提斯发育过程中冈瓦纳大陆北缘的大陆架区。认为中带是严格意义上的特提斯域,北带和南带则可分别视为劳亚大陆和冈瓦纳大陆的大陆架被海侵的部分。将特提斯域在东半球的部分自西向东划分为欧洲一北非段、西亚段、中亚段和东南亚段四段。各带和各段的油气分布差别极大。所谓特提斯域油气特别丰富的说法是有条件的,其主要依据是南带中东油区占有世界1/3以上的油气探明储量。而一旦将中东和北非划归为南方的冈瓦纳域,则上述说法无法成立。如果再将北带的年轻地台区划归北方的劳亚大陆域,那么,剩下来的严格意义上的特提斯域则反而为一条贫油气带。中国地处劳亚、冈瓦纳、太平洋三大构造域的交汇处,地质演化相当复杂,不能以“特提斯域油气丰富”的笼统概念来评价我国的含油气潜力。各地质单元的盆地保持特性如何,特别是第三纪以来是否仍为盆地,才是对油气聚集的潜力起决定性作用的控制因素。  相似文献   

6.
刘光鼎院士提出:海相中、古生界为中国油气资源二次创业的理想场所!东海-南海东北部是否有海相中生界?如果有,是否为海相特提斯?其油气勘探的远景能否担当重任?这些问题已成为勘探家关注的热点。  相似文献   

7.
亚洲特提斯域岩相古地理与油气聚集地质特征   总被引:7,自引:1,他引:6  
亚洲特提斯域油气在地理上主要分布于西亚段南带,其次为西亚段北带、东南亚段中带,再次为中亚段。对古、中、新特提斯域的岩相古地理特征作了分析研究,并编制了相关的岩相古地理图。认为油气分布在盆地类型上主要与前陆盆地、克拉通边缘盆地相关,盆地形态主要与台地、环形坳陷、线形坳陷等沉积—构造环境相关,其成烃物质的沉积-构造环境多位于古赤道与45°古纬度之间。提出盆地保存是盆地油气评价的先决条件。指出了亚洲特提斯域南带、中带和北带的油气勘探新领域。  相似文献   

8.
马锋  张光亚  刘祚冬  梁英波  张磊  杨柳明  许岩  毛祖臣 《地质论评》2021,67(4):67050009-67050009
通过分析特提斯构造域东段区域地质和含油气盆地勘探开发基础数据,从板块构造演化入手,系统编制特提斯构造域东段沉积构造演化剖面图和生储盖组合剖面图,研究盆地演化阶段、叠合特征、油气成藏条件及油气藏类型,揭示中亚和中国西部前陆盆地演化和油气富集规律异同。研究表明:古亚洲洋、古特提斯洋和新特提斯洋控制了特提斯构造域东段的区域构造分带、盆地演化、盆地类型及油气成藏模式。根据古洋壳缝合线可分为北、中、南3个构造带,古生代以来多期微板块的拼贴,导致特提斯构造域东段含油气盆地演化分为3个演化阶段,早古生代伸展、晚古生代挤压、早中生代伸展和新生代挤压构造作用控制了研究区盆地的叠合演化,发育下古生界、上古生界和中生界3套区域分布的优质烃源岩和下古生界、上古生界、中生界和新生界4套储盖组合,形成多种类型的油气藏。  相似文献   

9.
滇川西部是古特提斯遗迹发育最好,样式丰富多彩,保存完好的地区。其大地构造位置处在特提斯和环太平洋两大构造域在大陆上的交汇部位,又是扬子地块和印支——滇西地块两个古大陆的对接带。以这个地质上举世瞩目的关键地区作为突破口,预计将总结出古特提斯演化模型,丰富陆壳开合和大陆边缘(造山带)演化及其运动学、动力学的规律性认识,具有重要的理论意义。滇川西部是我国重要的金属成矿带,如Pb、Zn、Sn、Au、Cu等矿种,还是寻找钾盐、油气的远景区。因此该项目的完成,不仅能进一步提供可靠的成矿地质  相似文献   

10.
通过分析特提斯构造域东段区域地质和含油气盆地勘探开发基础数据,从板块构造演化入手,系统编制特提斯构造域东段沉积构造演化剖面图和生储盖组合剖面图,研究盆地演化阶段、叠合特征、油气成藏条件及油气藏类型,揭示中亚和中国西部前陆盆地演化和油气富集规律异同。研究表明:古亚洲洋、古特提斯洋和新特提斯洋控制了特提斯构造域东段的区域构造分带、盆地演化、盆地类型及油气成藏模式。根据古洋壳缝合线可分为北、中、南3个构造带,古生代以来多期微板块的拼贴,导致特提斯构造域东段含油气盆地演化分为3个演化阶段,早古生代伸展、晚古生代挤压、早中生代伸展和新生代挤压构造作用控制了研究区盆地的叠合演化,发育下古生界、上古生界和中生界3套区域分布的优质烃源岩和下古生界、上古生界、中生界和新生界4套储盖组合,形成多种类型的油气藏。  相似文献   

11.
The Middle-Late Jurassic mountain building process in the Western Tethyan realm was triggered by west- to northwestward-directed ophiolite obduction onto the wider Adriatic shelf. This southeastern to eastern Adriatic shelf was the former passive continental margin of the Neo-Tethys, which started to open in the Middle Triassic. Its western parts closed from around the Early/Middle Jurassic boundary with the onset of east-dipping intra-oceanic subduction. Ongoing contraction led to ophiolite obduction onto the former continental margin since the Bajocian. Trench-like basins formed concomitantly within the evolving thin-skinned orogen in a lower plate situation. Deep-water basins formed in sequence with the northwest-/westward propagating nappe fronts, which served as source areas of the basin fills. Basin deposition was characterized by coarsening-upward cycles, i.e. sedimentary mélanges as synorogenic sediments. The basin fills became sheared successively by ongoing contractional tectonics with features of typical mélanges. Analyses of ancient Neo-Tethys mélanges along the Eastern Mediterranean mountain ranges allow both, a facies reconstruction of the outer western passive margin of the Neo-Tethys and conclusions on the processes and timing of Jurassic orogenesis. Comparison of mélanges identical in age and component spectrum in different mountain belts figured out one Neo-Tethys Ocean in the Western Tethyan realm, instead of multi-ocean and multi-continent scenarios.  相似文献   

12.
Sedimentary history of the Tethyan basin in the Tibetan Himalayas   总被引:14,自引:0,他引:14  
After an epicontinental phase, the sedimentary rocks in the Tibetan Himalayas document a complete Wilson cycle of the Neo-Tethyan (Tethys Ill) evolution between the Gondwana supercontinent and its northward drifting margin (Lhasa block) from the Late Permian to the Eocene.During the Triassic rift stage, the basin was filled with a huge, clastic-dominated sediment wedge with up to > 5 000 m of flysch in the northern zone. Widespread deltaic clastics and shallow-water carbonates of late Norian to earliest Jurassic age in the southern zone mark, in conjunction with decreasing tectonic subsidence, the transition to the drift stage.Some 4 500 m of Jurassic and Early Cretaceous shallow-water carbonates and siliciclastics accumulated on the Tethyan Indian passive margin. Deepening-upward sequences with condensed beds at their tops alternate with repeated progradational packages of shelf sediments. Extensive abyssal sediments with basaltic volcanics in the northern deep-water zone reflect continued ocean spreading and thermal subsidence. Paleomagnetic data, gained separately for the northern Indian plate and the Lhasa block, indicate that the Neo-Tethys reached its maximum width about 110 Ma ago with a spreading rate of 4.8 cm/year, before it commenced to close again.During the remnant basin stage in the Late Cretaceous and Paleogene, a shallowing-upward megasequence, capped by a carbonate platform, developed in the southern inner shelf realm. In the northern slope/basin plain zone, turbidites and chaotic sediments, derived from both the acretionary wedge and the steepening slope of the passive margin, accumulated. The depositional center of the remnant basin shifted southward as a result of flexural subsidence and southward overthrusting.The sediments from the Triassic to the Paleogene are tentatively subdivided into five mega-sequences, which are controlled mainly by regional tectonics. Climatic influence (e.g., carbonate deposition), due to northward plate motion, is partially subdued by terrigenous input and/or increased water depth. During the Oligocene and Miocene, crustal shortening led to rapid uplift and the deposition of fluvial molasse in limited basins.  相似文献   

13.
Mesozoic-Cenozoic Basin Features and Evolution of Southeast China   总被引:1,自引:0,他引:1       下载免费PDF全文
The Late Triassic to Paleogene(T_3-E) basin occupies an area of 143100 km~2,being the sixth area of the whole of SE China;the total area of synchronous granitoid is about 127300 km~2;it provides a key for understanding the tectonic evolution of South China.From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China,combined with analysis of geometrical and petrological features,some new insights of basin tectonics are obtained.Advances include petrotectonic assemblages, basin classification of geodynamics,geometric features,relations of basin and range.According to basin-forming geodynamicai mechanisms,the Mesozoic-Cenozoic basin of SE China can be divided into three types,namely:1) para-foreland basin formed from Late Triassic to Early Jurassic(T_3-J_1) under compressional conditions;2) rift basins formed during the Middle Jurassic(J_2) under a strongly extensional setting;and 3) a faulted depression formed during Early Cretaceous to Paleogene (K_1-E) under back-arc extension action.From the rock assemblages of the basin,the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous(K_1) and a red -bed type formed from Late Cretaceous to Paleogene(K_2-E).Statistical data suggest that the area of all para-foreland basins(T_3-J_1) is 15120 km~2,one of rift basins(J_2) occupies 4640 km~2,and all faulted depressions equal to 124330 km~2 including the K_2-E red-bed basins of 37850 km~2.The Early Mesozoic (T_3-J_1) basin and granite were mostly co-generated under a post-collision compression background, while the basins from Middle Jurassic to Paleogene(J_2-E) were mainly constrained by regional extensional tectonics.Three geological and geographical zones were surveyed,namely:1)the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary;2)the Middle Jurassic rift zone;and 3)the Ganjiang separating zone of Late Mesozoic volcanism.Three types of basin-granite relationships have been identified,including compressional(a few),strike-slip(a few), and extensional(common).A three-stage geodynamical evolution of the SE-China basin is mooted:an Early Mesozoic basin-granite framework;a transitional Middle Jurassic tectonic regime; intracontinental extension and red-bed faulted depressions since the Late Cretaceous.  相似文献   

14.
扎格罗斯盆地是全球常规油气资源最富集的前陆盆地。基于最新的数据资料,应用石油地质综合评价和含油气系统分析的方法,研究了扎格罗斯盆地的油气分布和主控因素,以成藏组合为评价单元,评估了油气待发现可采资源量,并探讨了盆地的油气资源潜力和未来的勘探领域。研究表明,盆地发育6套含油气系统,白垩系/古近系复合含油气系统、侏罗系含油气系统和志留系Gakhum含气系统是最重要的含油气系统。区域上,盆地的油气主要分布于迪兹富勒坳陷、基尔库克坳陷和胡齐斯坦隆起;层系上,油气主要储集于古近系、新近系和白垩系。油气分布整体表现为“坳陷富油、隆起富气”的特征,其油气富集的主要控制因素是优质区域盖层、有效烃源岩的展布和新近纪的构造运动。资源评价结果表明,扎格罗斯盆地待发现可采石油、天然气和凝析油的资源量分别为44.6×108t、9.3×1012 m3和10.4×108t,合计129.8×108t油当量,最有勘探潜力的成藏组合是二叠/三叠系Deh Ram群、Asmari组和西北侏罗系成藏组合。  相似文献   

15.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

16.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

17.
中国东南部中生代发育有拗陷型、断裂型、断陷型3种不同类型的盆地,其中前者发育于晚三叠世-早侏罗世,其内多为含煤建造;次者发育于中侏罗世-早白垩世,主要为火山岩建造;后者发育于白垩纪-古近纪,主要为陆相红岩建造。研究结果表明,盆地构造类型的演化与该区中生代壳内岩浆层的演化密切相关。与联合古陆解体相伴随的古太平洋板块俯冲使得东亚陆缘岩石圈的内能逐渐升高,其结果是壳内岩浆层的形成和增厚以及其上盖层岩石的弯曲变形,导致中生代早期众多拗陷盆地的形成;燕山早期的构造运动使印支期已强烈变形的地壳进一步破裂,为壳内岩浆层的物质溢出或喷发提供了通道条件,从而在重熔界面(岩浆层上界面)埋深较浅的本区东部形成众多火山岩盆地;系统内能在晚侏罗世后逐渐下降,地壳冷却收缩使得断块的重力调整逐渐占主导位置,形成众多由正断层控制的断陷盆地。  相似文献   

18.
江汉盆地当阳向斜区主要不整合面剥蚀厚度   总被引:1,自引:0,他引:1  
施小斌  石红才  杨小秋 《地质学报》2013,87(8):1076-1088
本文利用磷灰石裂变径迹、(U-Th Sm)/He及镜质体反射率Ro%等古温标方法综合分析了江汉盆地当阳向斜区主要不整合面剥蚀厚度.结果表明:发育于古近纪末期不整合面T1界面累积剥蚀厚度超过1000m,且局部正反转区域如谢家湾断褶带等则遭受更大规模的剥蚀,剥蚀厚度可能超过2000m,而发育于晚侏罗世一早白垩世的不整合面T11界面累积剥蚀厚度超过4000m,且主要是晚侏罗世早白垩世构造事件的结果,表明该期剥蚀量明显大于古近纪末T1界面剥蚀量;晚三叠世—侏罗纪期间,当阳地区发育前陆坳陷带,侏罗纪堆积体具有明显东厚西薄的楔形体特征,位于盆地东部的前渊区沉积厚度可超过5000m;包括现今三叠系和侏罗系出露区以及江陵凹陷局部断隆区在内的前白垩系在侏罗纪前陆坳陷带发育时期达到最大埋深和最高古温度,其Ro%主要是该期获得的;晚白垩世—古近纪发育的断陷盆地范围可能远比现今残留盆地分布广,江陵凹陷上白垩统—古近系厚度超过9000m,其中古近系可能超过7000m,而在河溶凹陷谢家湾断褶带古近系厚度可超过3300m.  相似文献   

19.
从原始塔里木板块的演化入手,结合构造单元的划分,将巴丹吉林地区中生代地层划分为塔里木地层区的北山地层分区、阿拉善地层分区(包括北缘小区和南缘小区)和河西走廊地层分区,基本理顺了各分区(小区)中生代地层的命名系统,为研究各分区的沉积 构造古地理演化和恢复中生代原形盆地奠定了基础  相似文献   

20.
燕山东段下辽河地区中新生代盆山构造演化   总被引:9,自引:1,他引:8  
笔者通过分析燕山东段-下辽河地区的前中生代构造背景和中新生代盆山构造演化认为,该区中新生代的构造演化过程是在前中生代华北克拉通岩石图基础上发育起来的克拉通内(陆内或板内)盆山构造与挤压构造的交替演化过程,经历了早-中三叠世、晚三叠世-早侏罗世、中-晚侏罗世、白垩纪、新生代5个盆山构造演化阶段和中三叠世末、早侏罗世末、晚侏罗世末和白垩纪末、老第三纪末5期挤压作用。每次挤压作用都使得早期盆地萎缩或消亡,造成早期盆地反转。中-晚侏罗世、白垩纪和新生代三个阶段的伸展作用形成中-晚侏罗世断陷盆地、白垩纪断陷盆地和新生代裂谷盆地。在这一构造演化过程中,挤压作用和伸展作用交替出现,挤压构造和伸展构造间互发育。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号