首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
VLBI total intensity and linear polarization images of the BL Lacertae object 0735+178 have been obtained at     using the     VLA as a ground array together with the HALCA orbiting antenna, and at     about a month later using the VLBA. The most surprising result to come from a comparison of these two images, which have nearly equivalent resolution, is that the path of the jet appears to be appreciably different at the two wavelengths. We have interpreted this as evidence for free–free absorption to the east of the core, near a bend of about 90° in the 2-cm image where the emission is very weak in the 6-cm image. Overall, the polarization structures seen in corresponding regions at the two wavelengths are in good agreement. We find tentative evidence for enhanced rotation measures near two sharp bends in the VLBI jet.  相似文献   

2.
Global VLBI images in intensity and linear polarization at     of the BL Lacertae objects 0235+164, 0300+470, 0735+178, 0954+658, 1803+784, 1823+568, and BL Lac and OVV quasar 3C 279 are presented and analysed. These are the highest resolution polarization images currently available for several of these sources. On the whole, the tendencies observed at longer centimetre wavelengths are also exhibited in these 1.3-cm images. When core polarization is detected, the corresponding polarization angles χ tend to lie either parallel or perpendicular to the direction of the inner jet. The core degrees of polarization are usually comparable to those typical at 6 cm, but somewhat lower in several cases, suggesting that the higher resolution data are better separating the contributions of intrinsically weakly polarized cores and highly polarized emerging knots. The observed χ vectors in the jets of 0735+178, 0954+658, 1823+568, BL Lac and 3C 279 are aligned with the jet, implying the presence of transverse magnetic fields. In 0300+470 and BL Lac, there are regions where the direction of χ seems to be neither parallel nor perpendicular to the jet; it is not clear whether this is due to genuine obliquity of the magnetic field structure or to inadequate knowledge of the local flow direction.  相似文献   

3.
We present the results of simultaneous VLBA polarization observations of the BL Lacertae object 0820+225 at 5, 8 and 15 GHz, together with earlier images at 5 GHz. This source has an unusually rich total intensity and polarization structure compared with other objects with comparable redshifts. The magnetic field in the inner part of the complex and highly twisted VLBI jet is transverse, as is typical of BL Lacertae objects, but becomes roughly longitudinal further from the core, possibly as a result of shear. Although the integrated rotation measure of 0820+225 is modest, the rotation-measure distribution on parsec scales is non-uniform, and clearly shows regions where the rotation measure is substantially higher than the integrated value.  相似文献   

4.
The results of very long baseline interferometry (VLBI) total intensity ( I ) and linear polarization ( P ) observations at     are presented for 10 radio bright BL Lacertae objects. These images complete first-epoch polarization observations for the 1-Jy sample of northern BL Lacertae objects defined by Kühr & Schmidt. Estimates of superluminal speeds are presented for several sources, bringing the total number of sources in the sample for which such estimates are available to 16. Second-epoch observations currently being reduced should yield speed estimates for VLBI features in essentially all the sources in the sample. The jet magnetic fields of these BL Lacertae objects are usually transverse to the local jet direction, but a sizeable minority (about 30 per cent) have VLBI jet components with longitudinal magnetic fields. This may suggest that the conditions in the VLBI jets of BL Lacertae objects are favourable for the formation of relativistic shocks; alternatively, it may be that the toroidal component of the intrinsic jet magnetic field is characteristically dominant in these sources.  相似文献   

5.
VLBI total intensity ( I ) and linear polarization ( P ) images at λ =6 cm have been obtained for nine radio-bright BL Lacertae objects. These are the first VLBI P images for these sources, and, in a number of cases, the first I images as well. They confirm the previously noted tendency for the jet magnetic fields of BL Lacertae objects to be transverse to the local jet direction, but also provide new evidence that a sizeable minority of BL Lacertae objects have VLBI jet components with longitudinal magnetic fields. In addition, two sources have VLBI jet components in which the direction of the electric vector χ bears no obvious relation to the apparent local jet direction; the origin of these arbitrary χ offsets is unclear. A new tentative superluminal speed of β =6.3  h −1 has been determined for 0828+493; tentative speeds for two knots in 1418+546 are β =4.3 and 2.5  h −1. This work is part of an ongoing programme to determine the VLBI I and P structure of all 34 sources in the 1-Jy sample of northern BL Lacertae objects defined by Kühr & Schmidt.  相似文献   

6.
A comparison between low-frequency space very long baseline interferometry (VLBI) and high-frequency ground-based VLBI images can, in principle, be used to detect small variations in rotation measure (RM) on fine angular scales inaccessible to ground arrays alone. This paper reports an attempt to perform such a comparison using the jet in the quasar 3C 380. Observations made with the VSOP antenna HALCA together with a ground array at wavelength 1.6 GHz provide total intensity and polarization images of comparable resolution to those from the ground array alone at 5 GHz. The results provide an image showing derotated magnetic vector position angle of somewhat higher resolution than that available earlier. The results show variations in an RM around component A of the order of 10 rad m−2 that could not have been detected with the ground array alone. It is concluded that satellite VLBI observations provide a promising means to study the distribution of matter and magnetic fields around parsec-scale jets.
The ground observations used here follow the steady outward drift of component A, which has approximately doubled its distance from the core since the first observations in 1982. They also reveal total intensity and polarization structure associated with a bright knot 0.7 arcsec from the core which is reminiscent of that expected for a conical shock wave.  相似文献   

7.
We present 5-GHz Multi-Element Radio-Linked Interferometer Network (MERLIN) radio images of the microquasar GRS 1915+105 during two separate outbursts in 2001 March and July, following the evolution of the jet components as they move outwards from the core of the system. Proper motions constrain the intrinsic jet speed to be  >0.57 c   , but the uncertainty in the source distance prevents an accurate determination of the jet speed. No deceleration is observed in the jet components out to an angular separation of ∼300 mas. Linear polarization is observed in the approaching jet component, with a gradual rotation in position angle and a decreasing fractional polarization with time. Our data lend support to the internal shock model whereby the jet velocity increases leading to internal shocks in the pre-existing outflow before the jet switches off. The compact nuclear jet is seen to reestablish itself within 2 d, and is visible as core emission at all epochs. The energetics of the source are calculated for the possible range of distances; a minimum power of 1–10 per cent of the Eddington luminosity ( L Edd) is required to launch the jet.  相似文献   

8.
We present the results of multifrequency (15 + 8 + 5 GHz) polarization Very Long Baseline Array (VLBA) observations of the three BL Lacertae objects 0745+241, 1418+546 and 1652+398 together with 5-GHz VLBI Space Observatory Programme (VSOP) observations of 1418+546 and 1.6- and 5-GHz VSOP observations of the blazar 1055+018. The jets of all these sources have polarization structure transverse to the jet axis, with the polarization E vectors aligned with the jet along the jet spine and 'sheaths' of orthogonal E vectors at one or both edges of the jet. The presence of polarization aligned with the jet near the 'spine' may indicate that the jets are associated with helical B fields that propogate outward with the jet flow; the presence of orthogonal polarization near the edges of the jet may likewise be a consequence of a helical jet B field, or may be owing to an interaction with the ambient medium on parsec scales. We have tentatively detected interknot polarization in 1055+018 with E aligned with the local jet direction, consistent with the possibility that the jet of this source is associated with a helical B field.  相似文献   

9.
《New Astronomy Reviews》1999,43(8-10):691-694
Very Long Baseline Interferometry polarisation observations provide information about the magnetic-field structure of the parsec-scale jets in active galactic nuclei. 5-GHz VLBI polarisation observations of the compact BL Lacertae object 1803+784 were obtained in July 1998 with a global ground array plus the orbiting HALCA (VSOP) antenna. The extra resolution provided by baselines to the orbiting antenna has revealed a smoothly bent jet structure in 1803+784, with the magnetic field transverse all along the jet. This may indicate the presence of relativistic shocks, or possibly of a helical magnetic field surrounding the VLBI jet.  相似文献   

10.
We present Hα, [N  II ]6583 and 6-cm continuum images of the emission line nebula K 3-35. The optical images reveal an extended nebula (size ≃ 11 × 9 arcsec2 in [N  II ]) in which most of the emission originates in a very narrow (width 0.7–1.3 arcsec) S-shaped region which extends almost all along the nebula (≃ 7 arcsec). The 6-cm continuum emission also arises in this narrow region, which is characterized by an exceedingly high point-symmetry and systematic and continuous changes of the orientation with respect to the nebular centre. The properties of the narrow region suggest that it represents a system of precessing bipolar jet-like components. Two low-excitation, compact bipolar knots near the tips of the jet-like components are observed in the deduced [N  II ]/Hα image ratio. These knots may be generated by the interaction of the collimated outflows with surrounding material. A comparison of the optical and radio images shows the existence of differential extinction within the nebula. Maximum extinction is observed in a disc-like region which traces the equator of the elliptical shell previously observed at 20-cm continuum. All available data strongly suggest that K 3-35 is a very young planetary nebula in which we could be observing the first stages of the formation of collimated outflows and point-symmetric structures typically observed in planetary nebulae. The properties of the jet-like components in K 3-35 are in good agreement with models of binary central stars in which highly collimated outflows originate either from a precessing accretion disc or via magnetic collimation in a precessing star.  相似文献   

11.
We present images of the jets in the nearby radio galaxy NGC 315 made with the Very Large Array at five frequencies between 1.365 and 5 GHz with resolutions between 1.5 and 45 arcsec. Within 15 arcsec of the nucleus, the spectral index of the jets is  α= 0.61  . Further from the nucleus, the spectrum is flatter, with significant transverse structure. Between 15 and 70 arcsec from the nucleus, the spectral index varies from ≈0.55 on-axis to ≈0.44 at the edge. This spectral structure suggests a change of dominant particle acceleration mechanism with distance from the nucleus and the transverse gradient may be associated with shear in the jet velocity field. Further from the nucleus, the spectral index has a constant value of 0.47. We derive the distribution of Faraday rotation over the inner ±400 arcsec of the radio source and show that it has three components: a constant term, a linear gradient (both probably due to our Galaxy) and residual fluctuations at the level of 1–2 rad m−2. These residual fluctuations are smaller in the brighter (approaching) jet, consistent with the idea that they are produced by magnetic fields in a halo of hot plasma that surrounds the radio source. We model this halo, deriving a core radius of ≈225 arcsec and constraining its central density and magnetic field strength. We also image the apparent magnetic field structure over the first ±200 arcsec from the nucleus.  相似文献   

12.
External Faraday rotation has been detected in both the core and the parsec-scale jet of BL Lac in a four-frequency very long baseline interferometry (VLBI) experiment. This unexpected result indicates the presence of significant amounts of thermal gas close to the nucleus of this object. The rotation measure (RM) in the jet components is constant, and differs from the currently accepted Galactic RM, indicating that this value (−205 rad m−2) is not applicable to the components in the parsec-scale jet. The similarity of the RM in these jet components leads us to suspect that the jet RM is caused by a foreground screen in our Galaxy, although we cannot rule out a combination of Galactic RM and RM local to the jet. If the jet RM is due solely to the Galaxy, this would mean that the currently accepted value of the foreground RM (−205 rad m−2 ) is not correct, either because the value changed between 1982 and 1997, or because the assumption of no intrinsic source rotation was incorrect, as it was at our later epoch of observation. Our observations suggest a value of     .
After correcting for the foreground RM, the core value is −427 rad m−2, which is unexpected since, owing to the weakness of their line emission, BL Lac objects are often assumed to be depleted in gas. The core RM appears to be variable, probably because of the presence of at least two polarized components close to the core the relative contributions of which vary with time.  相似文献   

13.
The 64-m radio telescope equipped with an S-2 recording system in the town of Kalyazin was involved in an international fine-structure survey of quasars and active galactic nuclei carried out with a ground-based—space radio interferometer. The HALCA Japanese satellite in an orbit with an altitude of up to 24 000 km with an 8-m antenna was used as a space element of the interferometer. A radio image of the inner region of the CSS-type quasar 3C 147 was obtained with an angular resolution of ~0.3 mas at 6 cm. The image exhibits a core and several jet components mostly arranged in the main jet direction, but one of the components moves across the jet. No evidence was found for the superluminal separation of jet components. The estimated brightness temperature,~1011 K, is consistent with the theoretical limit imposed by synchro-Compton radiation.  相似文献   

14.
We investigate the brightest regions of the kpc-scale jet in the powerful radio galaxy 3C 346, using new optical Hubble Space Telescope ( HST ) ACS/F606W polarimetry together with Chandra X-ray data and 14.9 and 22.5 GHz Very Large Array (VLA) radio polarimetry. The jet shows a close correspondence between optical and radio morphology, while the X-ray emission shows a  0.80 ± 0.17 kpc  offset from the optical and radio peak positions. Optical and radio polarimetry show the same apparent magnetic field position angle and fractional polarization at the brightest knot, where the jet undergoes a large kink of almost 70° in the optical and radio images. The apparent field direction here is well aligned with the new jet direction, as predicted by earlier work that suggested the kink was the result of an oblique shock. We have explored models of the polarization from oblique shocks to understand the geometry of the 3C 346 jet, and find that the upstream flow is likely to be highly relativistic  (βu= 0.91+0.05−0.07)  , where the plane of the shock front is inclined at an angle of  η= 51°± 11°  to the upstream flow which is at an angle  θ= 14+8−7  deg to our line of sight. The actual deflection angle of the jet in this case is only 22°.  相似文献   

15.
Very long-baseline interferometry (VLBI) observations of the quasar 4C 71.07 (0836+710) at frequencies of 5 and 8.4 GHz at two epochs are used to investigate apparent misalignments between the magnetic field and jet direction found in this source. The observed polarization angles are not consistent with Faraday rotation of synchrotron radiation from an aligned magnetic field. Internal Faraday rotation in a uniform spherical source is also ruled out by the observations, and while the misalignments could result from internal Faraday rotation in a non-uniform source, no strong signatures of this effect were found. The jet shows two distinct kinks at which the ridge-line changes direction and then reverts to its original direction. The magnetic field in these regions is parallel to the jet, and remains so as the jet bends. It seems likely that the largest remaining misalignment is associated with another such kink that is unresolved by these observations. The percentage polarization decreases near the bright knots, consistent with enhancement in brightness by compressions in the plane normal to the jet axis. The inferred rotation measure is low (100 rad m−2) throughout the jet, as for other quasars. However near the core, the polarization position angles suggest a rotation measure that appears to be uncharacteristically low by comparison with other quasars.  相似文献   

16.
Simulated images of synchrotron intensity and polarization are presented for a simple, semidynamical model of conical shock waves in an astrophysical jet. Earlier work is extended by inclusion of a component of upstream magnetic field parallel to the jet in addition to the tangled (or disordered) component considered in the earlier paper. Results for several cases representing shocks of moderate strength are shown. It is found that the on-axis polarization reflects the upstream magnetic field structure. Off-axis, the electric field of polarization is oblique to the axis and covers a range depending on the shock cone angle and viewing angle. The results are compared with the structure of a bright knot about 0.8 arcsec from the nucleus in the quasar 3C 380, which may be an example of this kind of structure.  相似文献   

17.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

18.
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on H i spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least  1.3 c   and may be as large as  1.9 c   ; when relativistic effects are taken into account, the inferred true velocity is  ≥ 0.8 c   . The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2.  相似文献   

19.
We present multi-epoch 8.4- and 43-GHz Very Long Baseline Array images of the BL Lac object 0735+178. The images confirm the presence of a twisted jet with two sharp apparent bends of 90° within two milliarcseconds of the core, resembling a helix in projection. The observed twisted geometry could be the result of precession of the jet inlet, but is more likely produced by pressure gradients in the external medium through which the jet propagates. Quasi-stationary components are observed at the locations of the 90° bends, possibly produced by differential Doppler boosting.
Identification of components across epochs, since the earliest VLBI observations of this source in 1979.2, proves difficult due to the sometimes large time gaps between observations. One possible identification suggests the existence of superluminal components following non-ballistic trajectories with velocities up to     . However, in images obtained after mid-1995, components show a remarkable tendency to cluster near several jet positions, suggesting a different scenario in which components have remained nearly stationary in time, at least since mid-1995. Comparison with the earlier published data, covering more than 19 years of observations, suggests a striking qualitative change in the jet trajectory sometime between mid-1992 and mid-1995, with the twisted jet structure with stationary components becoming apparent only at the later epochs. This would require a re-evaluation of the physical parameters estimated for 0735+178, such as the observing viewing angle, the plasma bulk Lorentz factor, and those deduced from these.  相似文献   

20.
We present total-intensity and linear-polarization observations at a single epoch for a sample of 11 quasars and one BL Lac object. The data were taken with the VLA A array at λλ 20, 18, 6 and 2 cm. We examine the variation of the degree of polarization, p , and polarization position angle, PA, with wavelength, and attempt to determine the rotation measure, RM, of the cores in these sources. The degree of polarization does not exhibit any systematic variation with wavelength, the median values ranging from 2.3 to 3.5 per cent at the different wavelengths. The variation of PA with λ2 is not linear over the entire wavelength range. However, for most sources the λλ 20-, 18- and 6-cm PAs do follow such a linear relationship, yielding a median |RM| of about 15 rad m−2. In contrast, the λλ 6- and 2-cm observations give a median |RM| of about 129 rad m−2. The long-wavelength emission is likely to originate from a spatially different part of the milliarcsec-scale jet from the λ 2-cm emission, which could turn over at a higher frequency and is likely to be more compact and located closer to the quasar nucleus. We have attempted to obtain linear fits over the entire wavelength range allowing for n  π ambiguities in the PAs, but the fits are not statistically significant. The low values of RM for these core-dominated sources suggest that either the radio emission from the jet intercepts few of the emission-line clouds and their confining medium, or the clouds have a small filling factor and are possibly magnetically confined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号