首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH?+ and PO?3? accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process.  相似文献   

2.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

3.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   

4.
Denitrification in Qi'ao Island coastal zone, the Zhujiang Estuary in China   总被引:1,自引:0,他引:1  
Samples of sediments and the overlying water were collected in the Qi'ao Island coastal zone, the Zhujiang (Pearl River) Estuary (ZE). Denitrification rates, sediment oxygen demand (SOD) , and fluxes of inorganic nitrogen compounds were investigated with N2 flux method, using a self-designed continuous flow through and auto-sampling system. The results indicate that the denitrification rates varied between 222 and 908 μmol/(m2·h) with an average of 499 μmol/(m2·h). During incubation, the sediments absorbed dissolved oxygen in the overlying water with SOD ranging from 300 to 2 363 μmol/(m2·h). The denitrification rates were highly correlated with the SOD (r2 =0.77) regardless of the NO3- + NO2- concentrations in the overlying water, organ- ic carbon contents in sediments and water temperature, suggesting that the SOD was probably the main environ-mental factor controlling the denitrification in the Qi'ao Island coastal zone. There was a net flux of NO3- + NO2-into the sediments from the overlying water. The NH4+ flux from sediments into water as the result of mineraliza-tion was between 12. 3 and 210. 3 μmol/(m2·h) ,which seems limited by both organic carbon content in sedi-ment and dissolved oxygen concentration in the overlying water.  相似文献   

5.
Sediment cores were collected from April to August 2004 on tidal mudflats of the macrotidal Marennes-Oléron Bay (SW France), famous for the cultivation of Pacific oysters (Crassostrea gigas). The response of living (stained) benthic foraminifera to short-term biogeochemical disturbances in the sediment and overlying water, which may be involved in oyster summer mortality, was monitored. Short-term hypoxia occurred in early June, in conjunction with a sudden rise in temperature. In mid-June, the ammonia content of sediment porewater increased, leading to potentially maximal flux towards overlying waters. Foraminiferal assemblages, particularly in the topmost layer, were altered. Ammonia tepida was the most tolerant to temperature increase and hypoxic conditions whereas Brizalina variabilis and Haynesina germanica were sensitive to organic degradation and hypoxia. Cribroelphidium gunteri was the most opportunistic during recolonisation. Benthic foraminifera showed that short-term biochemical changes in the sediment are toxic and may be involved in the summer mortality of Pacific oysters.  相似文献   

6.
We conducted studies of nutrients and water mass movements in a semi-enclosed bay in northern China to understand nutrient dynamics under varying tidal regimes. Four cruises were conducted under varying tidal regimes in Jiaozhou Bay, two at neap tide and one at spring tide in August and one at spring tide in October 2001. In addition to transect surveys, drift experiments and an anchor station were employed to show current and tidal effects. Samples for nutrient evaluation were taken from the five major tributary rivers in March (dry season) and August (flood season) of 2002 to estimate nutrient transport by rivers, and wastewater samples were collected to evaluate nutrients in wastewater discharge. Benthic nutrient fluxes were determined by (1) incubation of sediments with overlying seawater on board the boat and (2) calculated by Fick’s First Law from nutrient pore water profiles. Nutrient concentrations were high in the north, especially the northeast and northwest sectors, reflecting human activities. Jiaozhou Bay was characterized by high nitrogen, but low phosphorus and silica concentrations compared to Chinese coastal seas. Based on nutrient atomic ratios, the limiting elements for phytoplankton growth in Jiaozhou Bay were silica and phosphorus. The fluxes of nutrients between sediment and overlying water varied depending on the specific nutrient, the site and redox conditions. Benthic nutrient fluxes based on sediment incubations were all lower than the estimated diffusive fluxes, implying that the nutrients released from sediment pore waters were probably utilized by benthic microalgal and bottom-water primary production. A preliminary estimate of nutrient budgets demonstrated that riverine and wastewater inputs were greater than atmospheric deposition into Jiaozhou Bay, except that nitrate from wastewater inputs was less than atmospheric deposition. Concentrations of nitrogen and phosphorus increased while silica decreased in the last four decades, similar to other eutrophicated estuaries. The resulting shift in nutrient composition in Jiaozhou Bay affects phytoplankton composition, trophic interactions, and sustainability of living resources.  相似文献   

7.
1 Indroduction The coastal zone and continental shelf area is an important region in the global biogeochemical cycle of nutrients in the ocean. This portion of the global ocean interacts closely with the continents, atmosphere and the open ocean in a comp…  相似文献   

8.
We report on a year's study of spatial and seasonal patterns of zooplankton abundance in Port Phillip and Westernport Bays, July 1982 to August 1983. These two bays, closely adjacent on the southern coast of Victoria, Australia, differ in several respects: Port Phillip is a nearly landlocked bay with a broad basin, while Westernport is an open tidal embayment with extensive mud and seagrass banks. Both bays have a resident zooplankton fauna distinct from that of Bass Strait. Although these resident communities have many species in common, patterns of abundance and dominance are quite different. We found that the holoplankton of Port Phillip was about half copepods, mostly Paracalanus indicus, with 23% Caldocera and 21% larvaceans. Westernport Bay zooplankton was dominated by Acartia tranteri, with no resident cladoceran fauna. Bass Strait species were more often found in Westernport than in Port Phillip Bay, but the resident community of Port Phillip Bay was more similar to that of Bass Strait than to that of Westernport.Although this study was undertaken in an exceptionally dry year, the available historical data show that the overall patterns found in 1982–1983 are typical for these bays. The differences in community composition probably relate to differences in depth profile, predator abundance, and suspended matter between the bays.  相似文献   

9.
This environmental overview of Eckernförde Bay (northern Germany) summarizes the results of previous studies relevant to the Office of Naval Research's Coastal Benthic Boundary Layer (CBBL) Baltic field exercise conducted during 1993–1994. Significant environmental characteristics include the following: (1) surface sediment distribution is related to water depth, dictated primarily by hydrodynamic reworking of older glacial deposits; (2) the origin and characteristics of small-scale sedimentary structures depend on storm-generated waves and currents; (3) the proximity of the sea surface and sediment —water interface results in a pelagic—benthic coupling that drives biogeochemical processes and produces organicrich, acoustically turbid sediments; and (4) the bay floor is complicated topographically by pockmarks and manmade sedimentary structures.  相似文献   

10.
Chronological variation in otolith chemistry can be used to reconstruct migration histories of fish. The use of otolith chemistry to study migration, however, requires knowledge of relationships between the chemical properties of the water and elemental incorporation into otoliths, and how water chemistry varies in space and time. We explored the potential for otolith chemistry of snapper, Pagrus auratus, to provide information on movement history between a large semi-enclosed bay, Port Phillip, and coastal waters in south-eastern Australia. Comparisons of water chemistry across two years demonstrated that ambient barium (Ba) levels in Port Phillip Bay were approximately double those in coastal waters (11 μg L−1 versus 6 μg L−1). Ba levels in otolith margins of wild juvenile snapper were highly positively correlated with ambient levels across 17 sampling locations, and levels in otolith margins of adult snapper collected from Port Phillip Bay were approximately double those of snapper collected in coastal waters. Mean partition coefficients for Ba (DBa) were similar for juvenile (0.43) and adult (0.46) otoliths, suggesting that otolith Ba incorporation relative to ambient levels was similar across life-stages. Low Ba variation across otoliths from adult snapper maintained in tanks for three years indicated that annual temperature and/or growth cycles did not strongly influence otolith Ba variation. We concluded that chronological Ba variation in snapper otoliths would be a reliable proxy for life-history exposure to variable ambient Ba. We used water chemistry data and Ba levels across otoliths of ocean resident snapper to estimate otolith Ba levels indicative of residence in Port Phillip Bay (>10 μg g−1) or coastal waters (<6 μg g−1). Peaks in Ba exceeding 10 μg g−1 were common across otoliths of snapper collected in Port Phillip Bay and a nearby coastal region. The location of strong Ba peaks within otoliths was consistent with residence in Port Phillip Bay during the spring/summer when snapper move into the Bay from coastal waters to spawn. Our results for snapper support the use of otolith Ba as a proxy for ambient levels throughout the life-history, however, confident interpretation of migration history from otolith Ba chronologies will most likely require matching time series of ambient Ba in the water bodies of interest.  相似文献   

11.
胶州湾沉积物-海水界面硅的交换速率及其影响因素探讨   总被引:2,自引:1,他引:1  
采用实验室培养法在原位温度和溶氧条件下测定了胶州湾沉积物-海水界面硅的交换速率,并探讨了相关环境因子对界面交换速率的影响机制。结果表明,胶州湾沉积物-海水界面硅的交换表现为从沉积物向水体释放,其交换速率在947~4 889 μmol/(m2·d)范围内,平均速率为1 819 μmol/(m2·d)。表层沉积物中叶绿素a(Chl a)和总有机碳(TOC)是影响胶州湾沉积物-海水界面硅交换速率的主要环境因子,同时表层沉积物的含水率(φ)、生源硅(BSi)和粘土含量以及间隙水中溶解硅酸盐(DSi)对沉积物-海水界面硅的交换也有重要影响。由此可推知,胶州湾沉积物-海水界面硅的交换速率主要受生物活动和溶解-扩散双重过程调控,而表层沉积物粒度与底层水体中DSi对胶州湾硅的释放影响较小。  相似文献   

12.
2013年5月、8月和11月调查了象山港大黄鱼网箱养殖区及附近沉积物中总有机氮(TON)、总有机碳(TOC)和总磷(TP)含量,并采用实验室模拟法研究了底泥耗氧率(SOCs)和沉积物-水界面营养盐(NH+4、NO-2+NO-3和PO3-4)通量。结果表明:养殖区(YZ)沉积物中的TON和TP含量显著高于距离养殖区50 m(F1)和100 m(F2)的区域(P<0.05)。底泥释放NH+4到上覆水中,但是从上覆水中吸收NO-2+NO-3和PO3-4。沉积物-水界面营养盐通量表现出明显的季节性变化,在8月,NH+4及PO3-4的释放量达到最大值。上覆水中NH+4、NO-2+NO-3和PO3-4的质量浓度随着沉积物-水界面营养盐通量的变化而变化。研究表明,象山港大黄鱼养殖活动对养殖区底泥造成了一定污染,且通过影响沉积物-水界面营养盐通量影响上覆水中营养盐分布,最终给整个养殖系统造成生态负担。  相似文献   

13.
Pore Water Nutrient Regeneration in Shallow Coastal Bohai Sea, China   总被引:1,自引:0,他引:1  
The regeneration of pore water nutrients was studied and the contribution of benthic nutrient fluxes to the overlying water was evaluated on the basis of field specific observations conducted in September–October 1998 and April–May 1999 in the Bohai Sea. Nutrient concentrations in sediment pore waters were examined by incubating sediment core samples with overlying seawater in air and/or nitrogen conditions. Nutrient diffusion fluxes calculated by diagenetic equations were within a factor of 2 during incubations. The factors affecting nutrient diffusion across sediment/water interface include bioturbation, nitrification, denitrification, adsorption, and dissolution. The regeneration of nutrients from sediments will increase nutrient loads of the Bohai Sea and affect nutrient atomic ratios in this region. Among nutrient sources from riverine input, atmospheric deposition and sediment regeneration, ammonium and phosphate mainly came from atmospheric deposition (>50%); nitrate was mainly transported by riverine input into the Sea, silicate from sediment regeneration accounts up to 60%. This demonstrates that nutrient regeneration in sediments contributes more silicate than riverine input and atmospheric deposition together, but benthic flux contributes very much less phosphate and nitrate relative to riverine input and atmospheric deposition. The benthic fluxes of nutrients may lead to a decrease of the amount of nitrate, an increase of phosphate, ammonia and silicate in the water column. The release of silicate from sediments may compensate the decrease of silicate due to the reduction of riverine discharge. Nutrient regeneration in sediment may have an important influence on the eutrophic character of coastal waters in this region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of benthic oxygenic photosynthesis on sediment-water fluxes of manganese and iron was studied for an intertidal sediment. Undisturbed sediments were incubated at an incident surface irradiance of 250 μE m−2 s−1at 26 °C. Oxygenic photosynthesis was selectively inhibited by adding [3-(3,4-dichloro)-1,1-dimethyl-urea] (DCMU). Benthic fluxes were determined experimentally from the change in manganese and iron concentrations in the overlying water, and were predicted from the pore water concentration gradients at the sediment-water interface assuming molecular diffusion as the transport mechanism. The experimental fluxes of manganese and iron in DCMU-treated cores amounted to −0·84 and −0·59 mmol m−2day−1, respectively, and were directed from the sediment towards the overlying water. In the control cores, showing high rates of benthic oxygenic photosynthesis, the fluxes of manganese and iron were directed towards the sediment, 0·06 and 0·01 mmol m−2day−1, respectively. Mass balances for the 0·1–0·14 cm thick oxic zone, calculated from the experimental fluxes and the predicted fluxes, suggest a minimum areal reoxidation of 0·6 mmol m−2day−1for manganese and of 0·48 mmol m−2day−1for iron in cores showing benthic photosynthesis. The estimated turnover times for dissolved Mn2+and dissolved Fe2+in the oxic surface layer during benthic photosynthesis were 0·8 and 0·25 h, respectively. Sediment oxygen microprofiles and the sediment pH profiles suggest that chemical precipitation and reoxidation dominates the retention of manganese and iron during benthic oxygenic photosynthesis in shallow intertidal sediments.  相似文献   

15.
基于2009年6–9月,2014年5月,2014年7–8月在乳山湾外邻近海域的综合调查资料,分析了该开放海域水体与沉积物中氮、磷营养盐的组成和分布,并在潮汐潮流数值模式计算水通量的基础上分析了近岸开放区域无机氮(DIN)和无机磷(DIP)的循环与收支的主要过程,量化了潮汐潮流、初级生产的消耗与转化、底界面过程与内部循环等过程对氮和磷营养盐循环与收支的影响。结果表明,夏季乳山湾外邻近海域水体DIN和DIP的浓度与分布受陆源输入和潮汐潮流的共同影响,高值均出现在湾口区域;沉积物-水界面存在DIN和DIP从沉积物向上覆水释放的现象,使得底层水体的氮、磷营养盐浓度高于表层水体。氮的收支表明,研究海域水体内部循环过程是初级生产所需DIN的主要来源,占初级生产总消耗量的86%,其次是水交换作用(11%),底界面扩散对初级生产的贡献相对较小(3%);水体DIN的移出主要是通过埋藏、向外海的输送和水体反硝化作用,其比例分别为80%、16%和4%。磷的收支显示,研究海域水体内部循环过程贡献了初级生产所需DIP的91%,其次是水交换作用(9%),底界面扩散对初级生产的贡献小于1%;水体DIP支出主要是通过沉积埋藏和向外海的输送,其比例分别为67%和33%。研究结果表明内部循环过程是近海水体氮和磷获得补充的主要途径,不过外部来源的氮、磷营养盐结构与系统内部具有显著的差异,且系统内磷的埋藏效率要高于氮,其必将对乳山湾外邻近海域营养盐结构和初级生产产生长远的影响。  相似文献   

16.
The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.  相似文献   

17.
Laboratory and in situ experiments were performed to assess the use of bromide as a tracer forin situ studies of benthic solute exchange. Bromide was used in the benthic chamber lander ‘ Elinor ’ for flux measurements in coastal sediments of the German Bight, Kiel Bight and Skagerrak (28–700 m water depth). Tracer and total oxygen uptake were monitored simultaneously in the same chamber incubation. Concurrently, in situ oxygen micro-profiles were recorded at the same locations by the profiling lander ‘ Profilur ’. Deployment in an anoxic silt (Kiel Bight) confirmed that in the absence of bioturbation and advection, tracer transport into the sediment was driven solely by molecular diffusion. This flux could be well described by a simple box model accounting for molecular diffusion only. In oxic sediments (German Bight and Skagerrak) enhanced exchange of bromide tracer due to bioirrigation parallelled enhanced oxygen uptake equivalent to a 4-fold molecular diffusive flux. Our experiments showed that incubations can be short. Depending on irrigation activity of the fauna, however, incubation length should exceed 3 h in order to provide a useful data base for flux calculations. The method demonstrating caveats is discussed and indicate possible improvements. The results show how the bromide tracer addition can be used as a tool for determining solute fluxes exceeding diffusive flux in benthic chamber incubations.  相似文献   

18.
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u∗), and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u∗ were found to correlate according to the following empirical formula: DBL=76.18(u∗)−0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m−2 day−1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.  相似文献   

19.
Benthic macroinfaunal species in a south Texas estuarine environment were studied over a 2·5 year period to characterize their distributions and ecology. The 13 dominant taxa chosen for investigation exhibited distinct habitat usage differences as judged both by the use of discriminant analysis and the differentiation of behavioral characteristics. Species coexistence in the estuarine bethic community of Corpus Christi Bay was examined with respect to resource partitioning for such parameters as food and space. Utilization of these resources by the dominant taxa differed in both temporal and spatial dimensions, with the spatial dimension consisting of horizontal and vertical attributes. Benthic species were separated according to (1) occurrences in certain sediment types with varying organic content, (2) presence in estuarine regions characterized by different phytoplankton productivity rates, (3) different periods of annual occurrence, and (4) occurrence in different sediment microhabitats characterized by varying sediment depth and relation to depth of oxygenated sediments. Superimposed upon differences in habitat usage of these species were behavioral traits, such as feeding differences, which further discriminated how benthic species obtained resources. Based upon species occurrence in a certain characteristic environment, we speculated on the structural division of the benthic habitat by various taxa often classified as common members of the same species' assemblages in the past. Although other investigators have demonstrated interactions among co-occurring benthic infaunal species, the information presented here illustrated how these species could minimize interactions in order to maintain their populations.  相似文献   

20.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号