首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have re-analysed the long-term optical light curve (LC) of the symbiotic star Z Andromedae, covering 112 yr of mostly visual observations. Two strictly periodic cycles and one quasi-periodic cycle can be identified in this LC. A   P 1 = 7550  d quasi-periodicity characterizes the repetition time of the outburst episodes of this symbiotic star. Six such events have been recorded so far. During quiescence states of the system, that is, in time-intervals between outbursts, the LC is clearly modulated by a stable coherent period of   P 2 = 759.1  d. This is the well-known orbital period of the Z Andromedae binary system that has been measured also spectroscopically. A third coherent period of   P 3 = 658.4  d is modulating the intense fluctuations in the optical brightness of the system during outbursts. We attribute the trigger of the outburst phenomenon and the clock that drives it, to a solar-type magnetic dynamo cycle that operates in the convection and the outer layers of the giant star of the system. We suggest that the intense surface activity of the giant star during maximum phases of its magnetic cycle is especially enhanced in one or two antipode regions, fixed in the atmosphere of the star and rotating with it. Such spots could be active regions around the North Pole and the South Pole of a general magnetic dipole field of the star. The P3 periodicity is half the beat of the binary orbital period of the system and the spin period of the giant. The latter is then either 482 or 1790 d. If only one pole is active on the surface of the giant, P3 is the beat period itself, and the spin period is 352 d. It could also be 5000 d if the giant is rotating in a retrograde direction. We briefly compare these findings in the LC of Z Andromedae to similar modulations that were identified in the LC of two other prototype symbiotics, BF Cyg and YY Her.  相似文献   

2.
We present new intensive photometric observations of the Be star μ Cen for several seasons which support a period close to 1 d. We also present high‐resolution spectroscopic data consisting of 302 spectra in 1999 and 864 spectra in 2000, all obtained within a two‐week observing run in each season. We use stacked grey-scale plots of spectra, from which the mean line profile has been removed, to examine the profile variations. We find that most nights show one residual absorption feature, moving from blue to red, visible in all helium and metal lines and also clearly visible in H α and other lines formed in the circumstellar environment. We therefore conclude that this feature is of circumstellar origin. In addition, a residual absorption feature moving from red to blue is sometimes seen at irregular intervals. We find that the residual absorption feature frequently strays outside the projected rotational velocity limit and that on occasions it remains well within this limit. The radial velocity data reproduce only two of the six frequencies previously found in the star. We point out that this by no means implies that the star is a multiperiodic, non-radial pulsator. Photometric data obtained over several seasons indicate a period very close to 1 d and not the 0.5-d period found from the radial velocities. We describe an outburst which occurred during the run and which resulted in increased H α emission two nights later. It is clear that outbursts in Be stars are localized events and that the gas released by outbursts is probably responsible for localized increased absorption, resulting in periodic light and line profile variations.  相似文献   

3.
The high-mass X-ray binary RX J0146.9+6121, with optical counterpart LS I+61°235 (V831 Cas), is an intriguing system on the outskirts of the open cluster NGC 663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400 s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240 d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10 d. We give arguments to support the interpretation that the 0.34 and 0.10 d periods could be due to stellar oscillations of the B-type primary star and that the 0.67 d period is the spin period of the Be star with a spin axis inclination of  23+10−8  degrees. We measured a systemic velocity of  −37.0 ± 4.3 km s−1  confirming that LS I+61°235 has a high probability of membership in the young cluster NGC 663 from which the system's age can be estimated as 20–25 Myr. From archival RXTE All Sky Monitor (ASM) data we further find 'super' X-ray outbursts roughly every 450 d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330 d.  相似文献   

4.
We present BVR full-light curves of V388 Cyg to provide a complete photometric solution for the first time. The light curves show a high degree of asymmetry (O'Connell effect). The maxima at 0.25 phase (Max I) are 0.023, 0.018 and 0.012 mag higher than those at 0.75 phase (Max II) in B , V and R , respectively. Three possible spot models are applied to fit the asymmetric light curves of V388 Cyg, in order to explain the O'Connell effect. We conclude that the model of the cool spot on the cooler star is the most reasonable model for V388 Cyg. The continuous period variation is confirmed by recently collected times of minima, including one minimum that is determined in this paper. The period decrease rate is estimated as d p /d t =−2.055×10−7 d yr−1 .  相似文献   

5.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

6.
We describe the evolutionary progression of an outburst of the Rapid Burster. Four outbursts have been observed with the Rossi X-Ray Timing Explorer between 1996 February and 1998 May, and our observations are consistent with a standard evolution over the course of each. An outburst can be divided into two distinct phases. Phase I is dominated by type I bursts, with a strong persistent emission component; it lasts for 15–20 d. Phase II is characterized by type II bursts, which occur in a variety of patterns. The light curves of time-averaged luminosity for the outbursts show some evidence for reflares, similar to those seen in soft X-ray transients. The average recurrence time for Rapid Burster outbursts during this period was 218 d, in contrast to an average ∼180‐d recurrence period observed during 1976–1983.  相似文献   

7.
We present three seasons of photometric observations and one season of intensive high-dispersion spectroscopic observations of the Be star λ Eridani. We show that only one period,   P =0.70173 d  , is present in the photometry, although there are large light amplitude variations from season to season. We confirm a suspicion that light outbursts repeat at intervals of about 475 d. A total of 348 echelle spectra of the star were obtained over a 2-week observing run. We show that the periodic variations are present in the emission wings of the helium lines, in the emission wings of the H α line and in the absorption cores of H β and H γ . Together with the fact that the periodic variations appear outside the projected rotational velocity limit, this indicates that they are associated with circumstellar material immediately above the photosphere and supports the idea of corotating gas clouds. We present evidence in support of a true rotational period of  2 P =1.40346 d  and suggest that the mass loss in Be stars is caused by centrifugal magnetic acceleration.  相似文献   

8.
We present high- and medium-resolution spectroscopic observations of the cataclysmic variable BF Eridani (BF Eri) during its low and bright states. The orbital period of this system was found to be 0.270881(3) d. The secondary star is clearly visible in the spectra through the absorption lines of the neutral metals Mg  i , Fe  i and Ca  i . Its spectral type was found to be K3±0.5. A radial velocity study of the secondary yielded a semi-amplitude of   K 2= 182.5 ± 0.9 km s−1  . The radial velocity semi-amplitude of the white dwarf was found to be   K 1= 74 ± 3 km s−1  from the motion of the wings of the Hα and Hβ emission lines. From these parameters, we have obtained that the secondary in BF Eri is an evolved star with a mass of  0.50–0.59 M  , whose size is about 30 per cent larger than a zero-age main-sequence single star of the same mass. We also show that BF Eri contains a massive white dwarf  ( M 1≥ 1.2 M)  , which allows us to consider the system as a Type Ia supernova progenitor. BF Eri also shows a high γ-velocity  (γ=−94 km s−1)  and substantial proper motion. With our estimation of the distance to the system  ( d ≈ 700 ± 200 pc)  , this corresponds to a space velocity of ∼350 km s−1 with respect to the dynamical local standard of rest. The cumulative effect of repeated nova eruptions with asymmetric envelope ejection might explain the high space velocity of the system. We analyse the outburst behaviour of BF Eri and question the current classification of the system as a dwarf nova. We propose that BF Eri might be an old nova exhibiting 'stunted' outbursts.  相似文献   

9.
We present optical spectroscopy and optical and infrared photometry of the neutron star soft X-ray transient Aql X–1 during its X-ray outburst of 1997 August. By modelling the X-ray, optical and IR light curves, we find a 3-d delay between the IR and X-ray rise times, analogous to the UV–optical delay seen in dwarf novae outbursts and black hole X-ray transients. We interpret this delay as the signature of an 'outside-in' outburst, in which a thermal instability in the outer disc propagates inward. This outburst is the first of this type definitively identified in a neutron star X-ray transient.  相似文献   

10.
We report spectroscopic orbital periods of 0.147 d (=3.53 h) for V533 Her, 0.207 d (=4.97 h) for V446 Her and 1.478 d for X Ser. V533 Her (Nova Herculis 1963) shows absorption features in its He  i and Balmer lines which appear only in a limited range of orbital phase, suggesting that it is a low-inclination SW Sextantis star. V446 Her is unusual in that it has started normal dwarf nova eruptions after a nova outburst, but we find nothing else unusual about it – in particular, a distance estimate based on its dwarf nova outbursts agrees nicely with another based on the rate of decline of its nova eruption, both giving d ∼1 kpc. In X Ser, unlike in other old novae with long periods, no spectral features of the secondary star are visible. This and its outburst magnitude both suggest that it is quite distant and luminous, and at least 1 kpc from the Galactic plane.  相似文献   

11.
We carried out I , R , V and B photometric observations of the neutron star X-ray binary RXTE J2123−058 shortly after the end of the X-ray outburst in mid-1998. We adopt the low-mass binary model to interpret our observations. After folding our data on the 0.24 821‐d orbital period, and correcting for the steady brightness decline following the outburst, we observed sinusoidal oscillations with hints of ellipsoidal modulations which became progressively more evident. Our data also show that the decline in brightness was faster in the V band than in the R and I bands. This suggests both the cooling of an irradiation-heated secondary star and the fading of an accretion disc over the nights of our observations.  相似文献   

12.
We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure phase with the Integrated Optics Near-Infrared Camera (IONIC) beam combiner, at the infrared optical telescope array interferometer. The position of the asymmetry changes with time and is correlated with the phase of the 2.1-year period found in the radial velocity measurements for this star. We can model the time-dependent asymmetry either as the orbit of a low-mass companion around the M giant or as an asymmetric, 20 per cent change in brightness across the M giant. We do not detect a change in the size of the star during a 3-year monitoring period neither with respect to time nor with respect to wavelength. We find a spherical dust shell with an emission size of 2.2 ± 0.1 D * full width at half-maximum around the M giant star. The star to dust flux ratio is estimated to be 11.63 ± 0.3. While the most likely explanation for the 20 per cent change in brightness is non-radial pulsation, we argue that a low-mass companion in close orbit could be the physical cause of the pulsation. The combined effect of pulsation and low-mass companion could explain the behaviour revealed by the radial velocity curves and the time-dependent asymmetry detected in the closure-phase data. If CH Cyg is a typical long secondary period variable then these variations could be explained by the effect of an orbiting low-mass companion on the primary star.  相似文献   

13.
In this study we present and re-analyse the historical, 1889–1998, light curve (LC) of the eclipsing symbiotic binary AR Pav. For the first time, we show that the timing of mid-points of eclipses observed during a quiescent phase obeys a quadratic ephemeris, with an initial orbital period P 0=605.18 d and a rate of period change     .
We determined a distance to the system of 5.8±1.5 kpc, the mass ratio of the giant to the hot star, M g M h=0.4±0.1, the mass of the giant, M g=1.8+1/−0.5 M and its radius, R g=167±15 R.
During quiescence, the LC has characteristic features similar to those observed in cataclysmic variables (CVs). It can be well reproduced by a model of a large accretion disc surrounding the hot star. However, it is probable that the geometry of the transferred material in the Roche lobe of the accretor in AR Pav is different from that of CVs.
During active phases the shape of the LC changes considerably. A complex wave-like variation developed as a function of the orbital phase with an amplitude of ∼1 mag. It is interpreted in terms of a collisionally heated emission region located on the giant surface and arising from the hot star eruption.  相似文献   

14.
Optical and X-ray observations are presented here of a newly reported X-ray transient system in the Small Magellanic Cloud. The data reveal many previously unknown X-ray detections of this system and clear evidence for a 45.99 d binary period. In addition, the optical photometry shows recurring outburst features at the binary period which may be well indicative of the neutron star interacting with a circumstellar disc around a Be star.  相似文献   

15.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

16.
Towards an understanding of the Of?p star HD 191612: optical spectroscopy   总被引:1,自引:0,他引:1  
We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe–O8fp). The Balmer and He  i lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. He  ii absorptions and metal lines (including many selective emission lines but excluding He  ii λ4686 Å emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with   P orb= 1542 d, e = 0.45  . We conduct a model-atmosphere analysis of the spectrum, and find that the system is consistent with a ∼O8 giant with a ∼B1 main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying 'clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.  相似文献   

17.
We have carried out BVR photometric and H spectroscopic observations of the star HD 61396 during 1998 March 20 to 1999 April 3. We have discovered regular optical photometric variability from this star, with an inferred period of 31.95±0.10 d, and an amplitude of 0.18 mag. A possible period of 35.34±0.12 d, as determined with Hipparcos , cannot be completely ruled out, however. Modelling of its photometric light curve with two circular spots indicates that 521 per cent of the stellar surface is covered by dark starspots which are 830 K cooler than the surrounding photosphere, and produce the observed rotational modulation of the optical flux. Optical spectroscopy reveals a variable H emission feature, indicating that it is an unusually active star.
In addition, we have analysed archival X-ray data of HD 61396, obtained from serendipitous observations with the ROSAT X-ray observatory, and we also discuss the radio properties of this star, based on both published Green Bank and unpublished VLA observations. The strong photometric variability and H emission, the relatively hard X-ray spectrum, and the high X-ray and radio luminosities imply that HD 61396 is most likely to be a member of the RS CVn class of evolved active binary stars. Its X-ray and radio luminosities place it among the five most luminous active binaries detected so far.  相似文献   

18.
We present a large set of radio observations of the luminous blue variable P Cygni. These include two 6-cm images obtained with MERLIN which spatially resolve the 6-cm photosphere, monitoring observations obtained at Jodrell Bank every few days over a period of two months, and VLA observations obtained every month for seven years. This combination of data shows that the circumstellar environment of P Cyg is highly inhomogeneous, that there is a radio nebula extending to almost an arcminute from the star at 2 and 6 cm, and that the radio emission is variable on a time-scale no longer than one month, and probably as short as a few days. This short-time-scale variability is difficult to explain. We present a model for the radio emission with which we demonstrate that the star has probably been losing mass at a significant rate for at least a few thousand years, and that it has undergone at least two major outbursts of increased mass loss during the past two millenia.  相似文献   

19.
We present measurements of the rotation rates of individual starspots on the rapidly rotating young K0 dwarf AB Doradus, at six epochs between 1988 December and 1996 December. The equatorial rotation period of the star decreased from 0.5137 to 0.5129 d between 1988 December and 1992 January. It then increased steadily, attaining a value of 0.5133 d by 1996 December. The latitude dependence of the rotation rate mirrored the changes in the equatorial rotation rate. The beat period between the equatorial and polar rotation periods dropped from 140 to 70 d initially, then rose steadily. The most rigid rotation, in 1988 December, occurred when the starspot coverage was at a maximum. The time-dependent part of the differential rotation is found to have     , which should alter the oblateness of the star enough to explain the period changes observed in several close binaries via the Applegate mechanism.  相似文献   

20.
On the basis of multicolor observations of the dwarf nova V1504 Cyg, made from 1988 to 2001 at the Crimean Astrophysical Observatory and at the Crimean Laboratory of the P. K. Shternberg State Astronomical Institute in bands of the standard BVR photometric system, the brightness characteristics and color indices were obtained for a superoutburst and normal outbursts of the star. At an outburst maximum V1504 Cyg is bluer than at a minimum, with the ascending branch of an outburst being characterized by redder color indices than the descending branch. A detailed analysis of the behavior of two outbursts is consistent with Smak's model A, in which an outburst is caused by temperature instability developing first in the outer parts of the accretion disk around the compact component of the binary system and propagating into the inner parts. The characteristics of the other outburst are consistent with Smak's model B, in which instability develops first in the inner parts of the disk. It is suggested that type A outbursts are typical of V1504 Cyg, while type B outbursts are rare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号