首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 , Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2–; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.  相似文献   

2.
Site-specific relationships between specific capacity and hydraulic parameters (transmissivity and hydraulic conductivity) were investigated for volcanic rocks in Maui, Hawaii, USA. Details about well construction were commonly ignored in previous studies. To improve on such efforts, specific-capacity values were normalized by the open interval of the well. Correcting specific capacity for turbulent head losses using step-drawdown tests and including aquifer penetration length improved the correlation between specific capacity and hydraulic conductivity and reduced uncertainty in the prediction of hydraulic parameters. The relationships provide estimates of aquifer parameters with correlation coefficients between 0.81 and 0.99. The relationships for Maui can probably be extended to other Hawaii islands, given the similarity of aquifer formations and a reasonable fit to step-drawdown data from Oahu. Hydraulic conductivity was estimated from 1,257 specific-capacity values in the Hawaii’s well database. Hydraulic-conductivity estimates for dike-free volcanic rocks are consistent on different islands. For all islands, the estimates range from 3 to 8,200 m/d, with a geometric-mean and median value of 272 and 291 m/d, respectively. A geostatistical approach was applied to Maui and Oahu to generate island-wide hydraulic-conductivity maps to facilitate groundwater management efforts.  相似文献   

3.
R. J. KORSCH 《Sedimentology》1978,25(2):247-265
The subdivision of thick sequences of turbidite sediments has been problematical because of the monotonous nature of the units. One method, of using detailed detrital petrography for a large number of specimens, has delineated variations with a sequence of Late Palaeozoic age in eastern Australia. The rocks occur within a single structural block and are all members of one sedimentary petrographic province. They have been subdivided into three stratigraphic units (Moombil Beds, Brooklana Beds and Coramba Beds) and greywackes from these units are quartz-poor to quartz-intermediate, feldspathic or volcanolithic types. Dacitic volcanism has provided most of the detritus and the contribution from non-volcanic sources is small. The Coramba Beds are further subdivided into four petrographic units which are parallel to the stratigraphic boundaries. These lithostratigraphic units are based on the presence or absence of detrital hornblende, and the relative ratio of volcanic lithic fragments to feldspar. Vertical petrographic variations within the entire sequence indicate that although the acid volcanic source was predominant throughout the time of deposition, there is a noticeable increase in the contribution from intermediate-volcanic, acid-plutonic, low-grade metamorphic and sedimentary sources towards the top of the sequence. Detrital hornblende is also present in the upper parts of the sequence.  相似文献   

4.
鄂尔多斯盆地地下水资源与开发利用   总被引:10,自引:0,他引:10  
鄂尔多斯盆地是我国西北地区的大型构造沉积盆地,以前寒武系变质岩为基底,依次沉积了下古生界碳酸盐岩、上古生界—中生界碎屑岩和各种成因的新生界,总厚度达6000m。根据盆地的地质构造特征和水文地质条件,将鄂尔多斯盆地含水岩系划为周边寒武系—奥陶系碳酸盐岩岩溶含水层系统、白垩系碎屑岩裂隙孔隙含水层系统和盆地东部基岩裂隙水与上覆第四系松散层孔隙含水层系统。在含水层系统划分的基础上,以含水体之间是否具有统一的水力联系和稳定的水动力场和水化学场为依据,将周边岩溶水可进一步划分为10个水流系统和22个子系统,白垩系地下水划分为5个水流系统和11个子系统,石炭系—侏罗系裂隙水与上覆松散层孔隙水划分为9个地下水系统。系统论述了含水层系统特征,区域水文地球化学特征和地下水循环规律,对鄂尔多斯盆地地下水资源进行了全面评价,针对能源基地建设的供水急需,提出了地下水合理开发利用建议。  相似文献   

5.
Jeju Island is a volcanic island composed predominantly of permeable basalts. The island is poor in surface water but abundant in groundwater. No actual perennial streams exist and the water resources on the island are dependent almost entirely on groundwater. The groundwater bodies on the island are classified into three general categories: high level, basal and parabasal groundwaters. The parabasal groundwater is further subdivided into lower and upper parabasal groundwaters due to the position of the Seogwipo Formation, which is made up of sedimentary rocks with a low permeability. The distribution of each groundwater type was evaluated through analyses of the spatial distribution of the Seogwipo Formation and the hydraulic gradient of the groundwater. Basal groundwater emerges extensively along the coast of the eastern sector, less commonly along the coast of the western sector. Parabasal groundwater occurs extensively over most of the island except for the southern sector, where it occurs only locally in the coastal area. This paper presents a summary of several studies on the occurrence and features of groundwater resources on Jeju Island, the largest island in Korea.  相似文献   

6.
Sellafield in West Cumbria was a potential site for the location of the UK's first underground repository for radioactive, intermediate level waste (ILW). The repository was to lie around 650 m beneath the ground surface within rocks of the Borrowdale volcanic group (BVG), a thick suite of SW dipping, fractured, folded and metamorphosed Ordovician meta-andesites and ignimbrites. These are overlain by an onlapping sequence of Carboniferous and Permo-Triassic sediments. In situ borehole measurements showed that upward trending fluid pressure gradients exist in the area of the potential repository site, and that there are three distinct fluid types in the subsurface; fresh, saline and brine (at depth, to the west of the site). Simulations of fluid flow in the Sellafield region were undertaken with a 2D, steady-state, coupled fluid and heat flow simulation code (OILGEN). In both simplified and geologically complex models, topographically driven flow dominated the regional hydrogeology. Fluids trended persistently upwards through the potential repository site. The dense brine to the west of the site promoted upward deflection of topographically driven groundwaters. The inclusion in hydrogeological models of faults and variably saline sub-surface fluids was essential to the accurate reproduction of regional hydraulic head variations. Sensitivity analyses of geological variables showed that the rate of groundwater flow through the potential repository site was dependent upon the hydraulic conductivity of the BVG, and was unaffected by the hydraulic conductivity of other hydrostratigraphic units. Calibration of the model was achieved by matching simulated subsurface pressures to those measured in situ. Simulations performed with BVG hydraulic conductivity 100 times the base case median value provided the “best-fit” comparison between the calculated equivalent freshwater head and that measured in situ, regardless of the hydraulic conductivity of other hydrostratigraphic units. Transient mass transport simulations utilising the hydraulic conductivities of this “best fit” simulation showed that fluids passing through the potential repository site could reach the surface in 15 000 years. Simple safety case implications drawn from the results of the study showed that the measured BVG hydraulic conductivity must be less than 0.03 m year−1 to be simply declared safe. Recent BVG hydraulic conductivity measurements showed that the maximum BVG hydraulic conductivity is around 1000 times this safety limit.  相似文献   

7.
In a coastal zone an understanding of the distance of the fresh water–salt water interface and its extension inland is important for prevention of sea water intrusion. In this article estimating methods are described for calculating the distance of a fresh water–salt water interface in a coastal confined aquifer based on the submarine fresh groundwater discharge. This groundwater discharge is controlled not only by the aquifer properties and hydraulic head difference, but also by the position of the fresh water–salt water interface in the coastal zone. A homogeneous and isotropic coastal confined aquifer is considered and fresh groundwater flow in the confined aquifer is thought to be at a steady state. Two observation wells at different distances in a profile perpendicular to the coastline are required in calculation of the distance of the interface toe in the coastal zone. Four coastal confined aquifers with horizontal and sloping confining beds and with varying thickness are also considered. Reasonable results are obtained when examples are used to illustrate the application of the methods. The methods require hydraulic head data at the two wells and thickness of the confined aquifers, but the hydraulic conductivity and fresh groundwater flow rate of the confined aquifers are not needed.  相似文献   

8.
The main aim of the present study is to detect the status of groundwater resources in west Mallawi area which represented one of the new reclamation lands. In order to achieve this aim, the hydrogeological and hydrogeochemical studies are carried out, based on the results of 21 pumping tests and chemical analysis of 29 water samples. Two water-bearing units are detected in the study area, namely, the Eocene fractured limestone aquifer which occupies the east portion of the studied area. The second aquifer consists of friable sediments of sand and gravel and may be related to the late Oligocene–early Miocene age and overlies the limestone rocks in the west, and this aquifer were studied for the first time in this work. Regionally, the groundwater flow in the area under study occurs toward the north and east directions. There is a hydraulic connection between both aquifers through the structural pattern affected the area. The partial recharge of the both aquifers takes place through the upward leakage from deep aquifers and the Nile water. There is a general decrease in the water salinity from west to east direction. The groundwater of both aquifers was evaluated for the different purposes and concluded that, it is considered suitable for different uses.  相似文献   

9.
Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.  相似文献   

10.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

11.
Fractured-rock aquifers display spatially and temporally variable hydraulic conductivity generally attributed to variable fracture intensity and connectivity. Empirical evidence suggests fracture aperture and hydraulic conductivity are sensitive to in situ stress. This study investigates the sensitivity of fractured-rock hydraulic conductivity, groundwater flow paths, and advection-dominated transport to variable shear and normal fracture stiffness magnitudes for a range of deviatoric stress states. Fracture aperture and hydraulic conductivity are solved for analytically using empirical hydromechanical coupling equations; groundwater flow paths and ages are then solved for numerically using groundwater flow and advection-dispersion equations in a traditional Toth basin. Results suggest hydraulic conductivity alteration is dominated by fracture normal closure, resulting in decreasing hydraulic conductivity and increasing groundwater age with depth, and decreased depth of long flow paths with decreasing normal stiffness. Shear dilation has minimal effect on hydraulic conductivity alteration for stress states investigated here. Results are interpreted to suggest that fracture normal stiffness influences hydraulic conductivity of hydraulically active fractures and, thus, affects flow and transport in shallow (<1 km) fractured-rock aquifers. It is suggested that observed depth-dependent hydraulic conductivity trends in fractured-rock aquifers throughout the world may be partly a manifestation of hydromechanical phenomena.  相似文献   

12.
 Applying the concept of "analogue studies" long used in reservoir characterization, outcrop analogues in two aquifer units of Southern Germany have been investigated: Upper Triassic (Keuper) alluvial sandstones (Stubensandstein) and Quaternary glaciofluvial gravels. Architectural element analysis of the outcrops is combined with ground-penetrating radar profiles derived a few meters behind the outcrop walls. Such calibration is used to better understand the three-dimensional sedimentary architecture. Many sedimentary units at the same time represent hydraulic flow units and are characterized by specific radar signatures. This approach leads to promising results, not only in unconsolidated aquifers but also in fully consolidated sedimentary rocks. Our studies will lead to a database with which more realistic predictions of the hydraulic behaviour of sedimentary aquifers systems, needed for numerical hydrogeological simulations, will be possible. Received: 17 June 1996 · Accepted: 12 August 1996  相似文献   

13.
S. Bachu 《Tectonophysics》1985,120(3-4):257-284
A detailed study of the groundwater and terrestrial heat flow was carried out over an area of 23,700 km2 west of Cold Lake, Alberta, which is part of the western Canada sedimentary basin. The information for the study was provided from data from 3100 wells drilled in the area. The screening and processing of thousands of stratigraphic picks, drillstem test data, bottom hole temperatures and formation water chemistry data was performed mainly using a specially designed software package. As a result, every stratigraphic unit is characterized by appropriate hydraulic and thermal parameters.

A sequence of aquifers, aquitards and aquicludes was differentiated. The groundwater flow in the Paleozoic aquifers is regional in nature and mainly horizontal. The flow in the Cretaceous aquifers is of intermediate type, mainly downward oriented. In general, the permeability of the Cretaceous and Paleozoic strata has such low values that the fluid velocity is less than 1 cm/yr.

The convective heat transport in the hydrostratigraphic sequence is negligible with respect to the conductive heat transfer, as shown by the Peclet number of the fluid and heat flow in porous media. The flow of the terrestrial heat flux from the Precambrian basement of the sedimentary basin to the atmosphere is controlled by the variability in the thermal properties of the formations in the basin.

The geothermal gradients were computed by hydrostratigraphic unit using a linear regression fit to the temperature data. As expected, they show higher values for the less conductive layers, and lower values for the more conductive ones. The weighted average, or the integral geothermal gradient of the whole sedimentary column, was computed by considering the difference between the temperature measured at the Precambrian basement and the annual average temperature at the surface. The areal distribution of the integral geothermal gradient (with an average of 22.0 mK/m) shows a strong correlation with the lithology.

The areal temperature distribution for each hydrostratigraphic unit was analyzed by mapping the deviation of the measured value from the computed geothermal gradient. The lateral heat flow from warmer to colder areas is one order of magnitude smaller than the vertical heat flow. In the more homogeneous units, the lateral heat flow presents a trend that seems to reflect the geometry and lithology.  相似文献   


14.
Hydrogeochemical investigations were carried out in the Dashtestan, the eastern part of Borazjan, with a focus on fluoride content. The study area is underlain by a complex geology that is dominated by three lithological units, namely marl, alluvial sediments, and carbonate rocks. To assess the major geochemical factors controlling the fluoride enrichment in water, 37 groundwater and 12 surface water samples were collected from the three lithological units. Fluoride concentrations ranged up to 3?mg/L, and average concentrations varied from 1.12 (in carbonate aquifers) to 1.73 (in alluvial aquifers) to 1.82?mg/L (in marl aquifers). To study the influence of rocks and soils on groundwater quality, an additional 41 soil and rock samples were also taken and analyzed for fluoride. The order of average fluoride content in both rocks and soils is: marl?>?alluvial sediments?>?limestone, which confirms that marl is a likely source of fluoride.  相似文献   

15.
Slip of nearly vertical faults or horizontal stratigraphic joints has provoked the shearing of at least 16 well casings in a period of over 10 years in the Valley of Queretaro aquifer, Mexico. Evidence integrated from field observations, remote surface-deformation monitoring, in-situ monitoring, stratigraphic correlation, and numerical modeling indicate that groundwater depletion and land subsidence induce shearing. Two main factors conditioning the stress distribution and the location of sheared well casings have been identified: (1) slip on fault planes, and (2) slip on stratigraphic joints. Additionally, the distribution of piezometric gradients may be a factor that enhances shearing. Slip on faults can be generated either by the compaction of sedimentary units (passive faulting) or by slip of blocks delimited by pre-existing faults (reactivation). Major piezometric-level declines and the distribution of hydraulic gradients can also be associated with slip at stratigraphic joints. Faults and hydraulic contrasts in the heterogeneous rock sequence, along with groundwater extraction, influence the distribution of the gradients and delimit the compartments of groundwater in the aquifer. Analogue modeling allowed assessment of the distribution of stress–strain and displacements associated with the increase of the vertical stress. Fault-bounded aquifers in grabens are common in the central part of Mexico and the results obtained can be applied to other subsiding, structurally controlled aquifer systems elsewhere.  相似文献   

16.
The Perth Basin (PB) hosts important aquifers within the Yarragadee Formation and adjacent geological formations with potential for economic exploitation by both geothermal energy and carbon capture and sequestration. Published studies on the reservoir quality of the sedimentary units of the PB are very few. This study reports some petrophysical and lithological characteristics of the sedimentary units of interest for geothermal and geosequestration scenarios and help interpolation toward non-sampled intervals. A new fluvial-dominated lithofacies scheme was developed for the Mesozoic stratigraphy from four wells drilled in the central PB (Pinjarra-1, Cockburn-1, Gingin-1 and Gingin-2) based on grainsize, sorting, sedimentary structures and colour that relate to the environment of deposition. Systematic laboratory measurements of permeability, porosity, and thermal conductivity were conducted on core samples to investigate a variety of lithofacies and depths from these wells. Empirical correlations are established among the different physical properties, indicating encouraging relationships for full PB basin interpolation such as between porosity and permeability, when the samples are grouped into ‘hydraulic units’ defined by a ‘flow zone indicator’ parameter. The common principal controls on the PB thermal conductivity are the pore space arrangement and mineralogical content, which are strongly lithofacies-specific. Therefore, the lithofacies type could be a good first-order discriminator for describing spatial variations of thermal conductivity and then estimate their flow zone indicator.  相似文献   

17.
To delineate spatial extent of seawater intrusion in a small experimental watershed in the coastal area of Byunsan, Korea, electrical resistivity surveys with some evaluation core drillings and chemical analysis of groundwaters were conducted. The vertical electrical sounding (VES) method was applied, which is useful to identify variations in electrical characteristics of layered aquifers. The drilling logs identified a three-layered subsurface including reclamation soil, weathered layer and relatively fresh sedimentary bedrock. The upper two layers are the main water-bearing units in this area. A total of 30 electrical sounding curves corresponded mostly to the H type and they were further divided into three classes: highly conductive, intermediate, and low conductive, according to the observed resistivity values of the most conductive weathered layer. In addition, groundwater samples from 15 shallow monitoring wells were analyzed and thus grouped into two types based on HCO3/Cl and Ca/Na molar ratios with TDS levels, which differentiated groundwaters affected by seawater intrusion from those not or less affected. According to relationships between the three classes of the sounding curves and groundwater chemistry, locations of the monitoring wells with low HCO3/Cl and Ca/Na ionic ratios coincided with the area showing the highly conductive type curve, while those with the high ratios corresponded to the area showing low conductive curve type. Both the low electrical resistivity and the low ionic ratios indicated effects of seawater intrusion. From this study, it was demonstrated that the VES would be useful to delineate seawater intrusion in coastal areas.  相似文献   

18.
《Applied Geochemistry》2001,16(7-8):849-859
Isotopic investigations using 14C of groundwater were carried out to understand the hydraulic conditions in the sedimentary rocks at the Tono study site, central Japan. 14C activities of groundwater observed range from 2 to 32 % Modern Carbon (pMC). Measured 14C activities of groundwater are corrected by the isotopic mass balance model based on 14C activities, δ13C values, concentrations of the dissolved inorganic carbon (DIC) and δ13C values of non-active carbon dissolved into the groundwater from carbonate minerals and organics. Assuming that the groundwater reservoir is comparable to the piston flow situation, the relative 14C ages of groundwaters were calculated from the corrected 14C activity. The relative 14C age suggests that the groundwater infiltration from the upper part of the sedimentary rocks to the lower part takes several thousands of years, or that the groundwater in the lower part of sedimentary rocks is derived from long distance flow from the surface through the unconformity between the sedimentary rocks and basement granite. The flow rate calculated by relative 14C ages shows similar values to those estimated by computer simulation using hydraulic pressure and conductivity data. Hydraulic conditions at the Tono study site inferred from 14C activity agree with those suggested from hydrogeological analyses. Isotopic approaches using 14C activity can be applied as geochemical evaluation for interpretations from the hydraulic study.  相似文献   

19.
The application of variations in the earth's gravity in groundwater exploration on a regional scale, especially in sedimentary basins, metamorphic terrains, valley fills, and for buried alluvial channels, is well established. However, its use in hard crystalline rocks is little known. In granite, for example, the upper weathered layer is a potential primary aquifer, and the underlying fractured rock can form a secondary aquifer. Fracturing and weathering increases the porosity of a rock, thereby reducing the bulk density. Changes in gravity anomalies of 0.1–0.7 mGal for granites, due to weathering or variations in lithology, can be detected. To test the use of gravity as a groundwater exploration tool for crystalline rocks, a gravity survey of the peninsular shield granites underlying Osmania University Campus, Hyderabad, India, was undertaken. At the site, gravity anomalies reflect variations in the lithology and in the thickness of weathered zones. These anomalies also define the position of intrusives and lineaments. Areas of more deeply weathered granite that contain wells of higher groundwater yield are represented by negative gravity values. In the weathered zone, well yield has an inverse relation to the magnitudes of residual gravity. The study confirms the feasibility of gravity as a tool for groundwater exploration in crystalline rocks. Electronic Publication  相似文献   

20.
Eight rare-earth elements (REE) have been determined in Cambro-Silurian sediments and volcanics from nine stratigraphic units in the Trondheim Region and ten stratigraphic units in the Oslo Region by neutron-activation analyses. In the eugeosynclinal sediments from the Trondheim Region the REE variations are related to variations in source material, which mainly are volcanic debris of local origin. In the foreland sediments from the Oslo Region significant development of clays has occurred and therefore the REE variations reflect the deposition environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号