首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 939 毫秒
1.
Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts.  相似文献   

2.
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes.  相似文献   

3.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

4.
The purpose of this study was to determine if and how a large, modern estuarine system, situated in the middle of an ancient carbonate platform, has affected its adjacent inner shelf both in the past during the last, post-glacial sea-level rise and during the present. An additional purpose was to determine if and how this inner shelf seaward of a major estuary differed from the inner shelves located just to the north and south but seaward of barrier-island shorelines. Through side-scan sonar mosaicking, bathymetric studies, and ground-truthing using surface grab samples as well as diver observations, two large submarine sand plains were mapped – one being the modern ebb-tidal delta and the other interpreted to be a relict ebb-tidal delta formed earlier in the Holocene. The most seaward portion of the inner shelf studied consists of a field of lobate, bathymetrically elevated, fine-sand accumulations, which were interpreted to be sediment-starved 3D dunes surrounded by small 2D dunes composed of coarse molluscan shell gravel. Additionally, exposed limestone hardbottoms supporting living benthic communities were found as well. This modern shelf sedimentary environment is situated on a large, buried shelf valley, which extends eastward beneath the modern Tampa Bay estuary. These observations plus the absence of an incised shelf valley having surficial bathymetric expression, and the absence of sand bodies normally associated with back-tracking estuarine systems indicate that there was no cross-shelf estuarine retreat path formed during the last rise in sea level. Instead, the modern Tampa Bay formed within a mid-platform, low-relief depression, which was flooded by rising marine waters late in the Holocene. With continued sea-level rise in the late Holocene, this early embayment was translated eastward or landward to its present position, whereby a larger ebb-tidal delta prograded out onto the inner shelf. Extensive linear sand ridges, common to the inner shelves to the north and south, did not form in this shelf province because it was a low-energy, open embayment lacking the wave climate and nearshore zone necessary to create such sand bodies. The distribution of bedforms on the inner shelf and the absence of seaward-oriented 2D dunes on the modern ebb-tidal delta indicate that the modern estuarine system has had little effect on its adjacent inner shelf.  相似文献   

5.
Hardbottoms are sequence boundaries and condensed sections that offer clues for the interpretation of the incomplete record of Tertiary continental shelf evolution. Seaward of 5 km, 50% of the inner west-central Florida shelf seafloor is flat hardbottom. These lithified surfaces are punctuated by shorefacing, scarped hardbottoms that trend shore-parallel (330°–0°) and vary in relief (up to 4 m). Scarped hardbottoms are the only natural relief on the inner shelf and support a diverse benthic community, the activities of which erode the outcrops, producing undercuts in excess of 1 m. Outcropping hardbottom strata are comprised of distinct, phosphate-rich, mixed carbonate–siliciclastic lithofacies, that range in age from Miocene to Quaternary. Miocene units are dolomite-rich and mark the upper surface of the inner shelf bedrock (Hawthorn Group). Dolomite within these beds (silt-sized, cloudy centered rhombs) fall into two age groups, correlating with highstands at 15 and 5 Ma. This lithofacies is consistent with models that indicate an increased flux of organic matter – resulting from topographically induced upwelling – promoting dolomitization during early burial diagenesis in the sulfate-reduction zone. Quaternary units are calcite-rich and perched atop the shelf bedrock. Samples of these units record a complex diagenetic history and multiple sea-level fluctuations. Based on evidence of primary marine cementation, they are interpreted to be hardground (non-deposition) surfaces, forming as a function of sediment starvation and minimal sediment movement. Decreased highstand magnitude or duration may have resulted in the absence of a significant organic component to Quaternary hardbottoms, which, in turn, may prevent subsequent dolomitization. These outcrops are a potential source for sediments to the inner shelf, not only as habitat for biological sediment production, but also through their destruction. The undercut, shorefacing, scarped hardbottom morphology displayed by west-central Florida hardbottoms is indicative of bio-erosion. Preliminary studies indicate a potential mass of 0.04 kg m−2 yr−1 of siliciclastic sediment is released to the inner shelf.  相似文献   

6.
A regional study of the Holocene sequence onlapping the west-central Florida Platform was undertaken to merge our understanding of the barrier-island system with that of the depositional history of the adjacent inner continental shelf. Key objectives were to better understand the sedimentary processes, sediment accumulation patterns, and the history of coastal evolution during the post-glacial sea-level rise. In the subsurface, deformed limestone bedrock is attributed to mid-Cenozoic karstic processes. This stratigraphic interval is truncated by an erosional surface, commonly exposed, that regionally forms the base of the Holocene section. The Holocene section is thin and discontinuous and, north or south of the Tampa Bay area, is dominated by low-relief sand-ridge morphologies. Depositional geometries tend to be more sheet-like nearshore, and mounded or ridge-like offshore. Sand ridges exhibit 0.5–4 m of relief, with ridge widths on the order of 1 km and ridge spacing of a few kilometers. The central portion of the study area is dominated nearshore by a contiguous sand sheet associated with the Tampa Bay ebb-tidal delta. Sedimentary facies in this system consist mostly of redistributed siliciclastics, local carbonate production, and residual sediments derived from erosion of older strata. Hardground exposures are common throughout the study area. Regional trends in Holocene sediment thickness patterns are strongly correlated to antecedent topographic control. Both the present barrier-island system and thicker sediment accumulations offshore correlate with steeper slope gradients of the basal Holocene transgressive surface. Proposed models for coastal evolution during the Holocene transgression suggest a spatial and temporal combination of back-stepping barrier-island systems combined with open-marine, low-energy coastal environments. The present distribution of sand resources reflects the reworking of these earlier deposits by the late Holocene inner-shelf hydraulic regime.  相似文献   

7.
西地中海加的斯湾、埃布罗湾、巴塞罗那岸外和利翁湾等外陆架和陆坡上部分布大片的砂质水下沙丘、沙带、沙脊以及沙席等砂质底形。沙丘长为150~760m,最长为3km;高一般为0.1~5.0m,最高为20m。背流坡指向SW,丘长与丘高相关斜率为H=0.934L0.006 3,低于1978年世界标准的F氏斜率线;沙脊长为4~24km,宽为1~2.3km,高出海底10~30m。砂层厚约12~30m,其成因与冰消期古岸线相关。以水深350m的直布罗陀海峡为中心,大西洋低盐水团和地中海高盐水团相交换而形成的地中海环流是导致海底砂质底形发育的主要动力,陆架外侧普遍分布的垂岸沟谷及顺谷流也起一定作用。据14C年代测定,大型沙丘沙脊形成于距今13~11ka的冰消期,当时海面波动式趋稳。现代洋流只能在暴风浪期间、底流速较大时才能带动泥沙运动且进行局部修饰、破坏和蚀低原砂质底形。  相似文献   

8.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   

9.
《Marine Geology》2005,216(4):275-296
Recent chirp seismic reflection data combined with multibeam bathymetry, backscatter, and analysis of grab samples and short cores provide evidence of significant recent erosion on the outer New Jersey shelf. The timing of erosion is constrained by two factors: (1) truncation at the seafloor of what is interpreted to be the transgressive ravinement surface at the base of the surficial sand sheet, and (2) truncation of apparently moribund sand ridges along erosional swales oriented parallel to the primary direction of modern bottom flow and oblique to the strike of the sand ridges. These observations place the erosion in a marine setting, post-dating the passage of the shoreface ravinement and the evolution of sand ridges that form initially in the near shore environment. Also truncated by marine erosion are shallowly buried, fluvial channel systems, formed during the Last Glacial Maximum and filled during the transgression, and a regional reflector “R” that is > ∼ 40 kyr. Depths of erosion range from a few meters to > 10 m. The seafloor within eroded areas is often marked by “ribbon” morphology, seen primarily in the backscatter data as areas of alternating high and low backscatter elongated in the direction of primary bottom flow. Ribbons are more occasionally observed in the bathymetry; where observed, crests exhibit low backscatter and troughs exhibit high backscatter. Sampling reveals that the high backscatter areas of the ribbons consist of a trimodal admixture of mud, sand and shell hash, with a bimodal distribution of abraded and unabraded sand grains and microfauna. The shell hash is interpreted to be an erosional lag, while the muds and unabraded grains are, in this non-depositional environment, evidence of recent erosion at the seafloor of previously undisturbed strata. The lower-backscatter areas of the ribbon morphology were found to be a well-sorted medium sand unit only a few 10's of cm thick overlying the shelly/muddy/sandy material. Concentrations of well-rounded gravels and cobbles were also found in eroded areas with very high backscatter, and at least one of these appears to be derived from the base of an eroded fluvial channel. Seafloor reworking over the transgressive evolution of the shelf appears to have switched from sand ridge evolution, which is documented to ∼ 40 m water depth, to more strictly erosional modification at greater water depths. We suggest that this change may be related to the reduction with water depth in the effectiveness of sediment resuspension by waves. Resuspension is a critical factor in the grain size sorting during transport by bottom currents over large bedforms like sand ridges. Otherwise, we speculate, displacement of sand by unidirectional currents will erode the seafloor.  相似文献   

10.
Side-scan sonar coverage of a 1.5 km by 1.5 km area of the inner shelf depicts the morphology of part of a submarine ridge field. The presence of megaripples indicates that ridge sediments are presently reworked by currents. Megaripples occur in the coarser sands of the north-facing ridge flanks. Distribution of megaripples and the ridge asymmetry support the hypothesis that sand ridges respond as large-scale bedforms to south-setting flows. Megaripple crests were observed to be aligned shore-parallel which indicates a pre-survey episode of shore-normal bedload transport.  相似文献   

11.
美国东岸,自纽约长岛经马里兰、新泽西直至弗罗里达基本属于沙坝渴湖岸,岸外的内、外陆架上分布一系列水下沙脊及脊间沙带、沙丘和沙波等次一级底形。按新泽西岸外20-80m水深处35个沙脊的统计,脊长约2~11km,宽约1~4km,长宽比界于2:1~3:1之间,与世界典型沙脊长宽比40:1比较,本区沙脊属于短轴浪控型,脊高约1~3m,或者更高。向NE10°~30°伸展,两坡不对称,上游坡平缓,下游坡较陡,约2.5°~7.0°。按34-48m水深处的“黄金沙脊”上的20余钻孔岩心分析和HC年龄测试,划分沙脊自下而上3层地层:9~11kaBP以前的平原陆相层;9—5kaBP的下部沙脊沙层;5kaBP以来的上部沙脊沙层。上部沙脊层不断向下游SE侧超越迁移,局部定位观测的沙脊迁移率为1~2m/a。  相似文献   

12.
东海陆架冰后期潮流沙脊地貌与内部结构特征   总被引:14,自引:0,他引:14  
印萍 《海洋科学进展》2003,21(2):181-187
东海陆架以宽平的地形、充分的陆源沉积物供应、快速沉降和强动力场为特征,中外陆架发育大规模潮流沙脊地貌。潮流沙脊走向大致为NW—SE向分布,与区域潮流主方向一致或成较小交角。东海陆架冰后期潮流沙脊以不对称横剖面为特征,陡坡倾向SW。沙脊内部发育典型的高角度前积斜层理,倾向与沙脊横剖面陡坡方向一致。这些斜层理可以划分为高达4组不同特征的组合,分别代表潮流沙脊发育的不同阶段,对应于冰后期海平面上升的不同时期。东海陆架潮流沙脊主体形成于冰后期海侵阶段,目前仍然受到陆架潮流场的影响,沙脊顶部为再沉积活动层。  相似文献   

13.
TidalbedformsineasternpartoftheBohaiSeaLiuZhenxia,S.Berne,WangKuiyang,T.Marsset,XiaDongxing,TangYuxiang,J.F.Bourillet(Receive...  相似文献   

14.
Sand ridge fields on the inner shelf of the Middle Atlantic Bight are generally thought to have formed in response to northeasterly storm flows as the shoreface underwent erosional retreat with postglacial sea-level rise. However, the hydrodynamic mechanism is poorly unerstood. Coastal boundary models see the ridges as responses of the seafloor to distortions in the flow induced by the coastal boundary. Stability models propose that an irregular initial topography will evolve toward an ordered array of bedforms in response to repeated flow events. The two classes of models are not mutually exclusive, nor are members within each class mutually exclusive. Results of measurements of ridge spacing on the inner Atlantic shelf of North America agree with the predictions of stability models.  相似文献   

15.
基于高分辨率的单道地震和多波束测深数据,识别并对比了东海陆架中部同一海区相距20余万年的层U14和层U2两期沙脊群,其中层U14期沙脊属于埋藏沙脊,位于东海海底以下90 m深处,推测属于距今320~200 ka的海侵体系域(TST),沙脊顶界面是该期海侵的最大洪泛面(MFS);层U2期沙脊位于东海陆架,属于衰退沙脊,系末次盛冰期(LGM)以来的TST,顶界面是LGM以来的MFS。尽管两期沙脊形成年代相距20余万年,地层层位相距近90 m,但是沙脊群总体走向一致,表明距今2×105 a以来东海陆架潮波基本格局稳定。从层U2期可识别出4个亚期沙脊,通过多波束海底地形图可识别出4组走向的沙脊,多亚期、多走向沙脊是LGM以来海平面阶梯状波动在海底地形演变过程中的响应证据。  相似文献   

16.
东海西北部陆架表层沉积物重矿物组合及其沉积环境指示   总被引:3,自引:0,他引:3  
研究了东海陆架360个表层沉积物的碎屑矿物和粒度组成,利用R型聚类方法提取稳定重矿物和重矿物分异指数作为矿物分布规律的指示因子;根据快速聚类结果将重矿物组成分为3个区:东海陆架海侵体系域晚期残留砂体区、高位体系域晚期长江水下前三角洲和浙闽沿岸流泥质沉积区、高位体系域扬子浅滩沉积区。结合粒度参数和特征矿物分布、沉积物14C年龄对各区沉积环境进行讨论,确定陆架残留沉积和改造沉积的成因、长江水下三角洲和浙闽沿岸流泥质区的范围,以及对应不同海侵层序的矿物分异特征和物质"源-汇"关系。聚类分析虽能够指示同一物源碎屑矿物分布与沉积动力关系,但物源不同,聚类结果可能误导沉积环境分析。扬子浅滩表层砂体是在距今6~4和3~2 ka 的两个潮流沉积发育期形成的多期改造沙波沉积。  相似文献   

17.
During RV SONNE cruise SO-79 to the eastern Pacific Ocean, two areas of about 65×80 km in the northern Peru Basin were surveyed with the acoustic mapping systems HYDROSWEEP (bathymetry), PARASOUND (3.5 kHz high-resolution seismic system), and a deep-towed side-scan sonar system. In addition, we sampled sediments using piston and box corers. The data show an unexpected variability of seafloor features: The bathymetry is characterized by an abyssal hill topography with predominately N-S ridges up to 300 m high, and scattered volcanic hills. Moreover, one 2000-m-high seamount was mapped. PARASOUND shows several distinct reflectors within the sediment cover, all of which are attributed to carbonate-rich strata. In the northern area, the uppermost prominent reflector is related to the Mid-Brunhes Event (0.45 Ma) in the sediment cores, while the lowermost represents acoustic basement. In the southern area, the seismic pattern reveals an upper opaque zone and a lower transparent zone. The base of the opaque zone is marked by a distinct reflector which corresponds to a huge carbonate peak (6–7 Ma) in the sediment cores. However, despite this general pattern, the PARASOUND records show a highly variable situation, with the distribution of sediment echo types strongly influenced by the seafloor topography. The side-scan sonar revealed the existence of numerous small volcanic cones up to 25 m high and nearly free of sediment. Additionally, the sonar records show a patchy (up to 800 m across) seafloor reflectiviti. We interpret this patchiness as a local lack of manganese nodule coverage. Volcanic cones and the most distinct nodule-free patches are usually on ridges. We interpret this variability as caused by winnowing and erosion, an interpretation that is supported by the occurrence of outcrops of Tertiary strata. This regional small-scale variability argues for a highly dynamic depositional history of the Peru Basin.  相似文献   

18.
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession.  相似文献   

19.
东海陆架两期沙脊的时空对比   总被引:3,自引:2,他引:1       下载免费PDF全文
基于高分辨率的单道地震和多波束测深数据,识别并对比了东海陆架中部同一海区相距20余万年的层U14和层U2两期沙脊群,其中层U14期沙脊属于埋藏沙脊,位于东海海底以下90m深处,推测属于距今320~200ka的海侵体系域(TST),沙脊顶界面是该期海侵的最大洪泛面(MFS);层U2期沙脊位于东海陆架,属于衰退沙脊,系末次盛冰期(LGM)以来的TST,顶界面是LGM以来的MFS。尽管两期沙脊形成年代相距20余万年,地层层位相距近90m,但是沙脊群总体走向一致,表明距今2×105/a以来东海陆架潮波基本格局稳定。从层U2期可识别出4个亚期沙脊,通过多波束海底地形图可识别出4组走向的沙脊,多亚期、多走向沙脊是LGM以来海平面阶梯状波动在海底地形演变过程中的响应证据。  相似文献   

20.
通过系统采集海底表层沉积样品进行粒度测试分析,对现代莱州浅滩地区的沉积类型、粒度特征、泥沙搬运方式、运移趋势及沉积动力、沉积机制进行了研究。结果表明,莱州浅滩是形成于松散碎屑堆积海岸岬角岸外的砂砾质水下沙洲/沙脊,它的形成深刻改变了浅滩地区原有的沉积动力和机制,在浅滩两侧海域各自形成了大致对称的潮余环流,分别与两个主要...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号