首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
 A variety of cognate basalt to basaltic andesite inclusions and dacite pumices occur in the 7-Ma Rattlesnake Tuff of eastern Oregon. The tuff represents ∼280 km3 of high-silica rhyolite magma zoned from highly differentiated rhyolite near the roof to less evolved rhyolite at deeper levels. The mafic inclusions provide a window into the processes acting beneath a large silicic chamber. Quenched basaltic andesite inclusions are substantially enriched in incompatible trace elements compared to regional primitive high-alumina olivine tholeiite (HAOT) lavas, but continuous chemical and mineralogical trends indicate a genetic relationship between them. Basaltic andesite evolved from primitive basalt mainly through protracted crystal fractionation and multiple cycles (≥10) of mafic recharge, which enriched incompatible elements while maintaining a mafic bulk composition. The crystal fractionation history is partially preserved in the mineralogy of crystal-rich inclusions (olivine, plagioclase ± clinopyroxene) and the recharge history is supported by the presence of mafic inclusions containing olivines of Fo80. Small amounts of assimilation (∼2%) of high-silica rhyolite magma improves the calculated fit between observed and modeled enrichments in basaltic andesite and reduces the number of fractionation and recharge cycles needed. The composition of dacite pumices is consistent with mixing of equal proportions of basaltic andesite and least-evolved, high-silica rhyolite. In support of the mixing model, most dacite pumices have a bimodal mineral assemblage with crystals of rhyolitic and basaltic parentage. Equilibrium dacite phenocrysts are rare. Dacites are mainly the product of mingling of basaltic andesite and rhyolite before or during eruption and to a lesser extent of equilibration between the two. The Rattlesnake magma column illustrates the feedback between mafic and silicic magmas that drives differentiation in both. Low-density rhyolite traps basalts and induces extensive fractionation and recharge that causes incompatible element enrichment relative to the primitive input. The basaltic root zone, in turn, thermally maintains the rhyolitic magma chamber and promotes compositional zonation. Received: 1 June 1998 / Accepted: 5 February 1999  相似文献   

2.
A. nal 《Geological Journal》2008,43(1):95-116
The Middle Miocene Orduzu volcanic suite, which is a part of the widespread Neogene Yamadağ volcanism of Eastern Anatolia, consists of a rhyolitic lava flow, rhyolitic dykes, a trachyandesitic lava flow and basaltic trachyandesitic dykes. Existence of mafic enclaves and globules in some of the volcanic rocks, and microtextures in phenocrysts indicate that magma mingling and mixing between andesitic and basaltic melts played an important role in the evolution of the volcanic suite. Major and trace element characteristics of the volcanic rocks are similar to those formed in convergent margin settings. In particular, incompatible trace element patterns exhibit large depletions in high field strength elements (Nb and Ta) and strong enrichments in both large ion lithofile elements (Ba, Th and U) and light rare earth elements, indicating a strong subduction signature in the source of the volcanic rocks. Furthermore, petrochemical data obtained suggest that parental magmas of rhyolite lava and dykes, and trachyandesite lava and basaltic trachyandesite dykes were derived from subduction‐related enriched lithospheric mantle and metasomatized mantle (± asthenosphere), respectively. A detailed mineralogical study of the volcanic suite shows that plagioclase is the principal phenocryst phase in all of the rock units from the Orduzu volcano. The plagioclase phenocrysts are accompanied by quartz in the rhyolitic lava flows and by two pyroxenes in the trachyandesitic lava flows and basaltic trachyandesitic dykes. Oxide phases in all rocks are magnetite and ilmenite. Calculated crystallization temperatures range from 650°C to 800°C for plagioclase, 745°C–1054°C for biotite, 888°C–915°C for pyroxene and 736°C–841°C for magnetite–ilmenite pairs. Calculated crystallization pressures of pyroxenes vary between 1.24–5.81 kb, and oxygen fugacity range from −14.47 to −12.39. The estimates of magmatic intensive parameters indicate that the initial magma forming the Orduzu volcanic unit began to crystallize in a high‐level magma chamber and then was stored in a shallow reservoir where it underwent intermediate‐mafic mixing. The rhyolitic lava flow and dykes evolved in relatively shallower crustal magma chambers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The mineralogy and geochemical characteristics of intermediate composition ferrolatites and related lavas from the Magic Reservoir eruptive center (central Snake River Plain) have been investigated to evaluate the origin and petrologic significance of these hybrid lavas. The ferrolatites are chemically uniform, but contain a disequilibrium phenocryst/xenocryst assemblage derived in part from mixed rhyolitic and basaltic magmas that are closely represented by extrusive units in the area. The hybrid lavas also contain xenoliths of Archean granulites and have high 87Sr/ 86Sr and low 143Nd/144Nd ratios, all of which suggest significant magma-crust interaction. Quantitative models including magma mixing, minor crystal fractionation, and crustal contamination very closely reproduce the observed compositions of these ferrolatites; closed system fractionation and (or) simple bulk contamination models are not as successful and can be ruled out. It appears that preexisting mafic and silicic magmas from distinct sources (e.g., mantle and crust) encounter one another in crustal-level magma chambers under conditions where intimate mixing may occur despite wide differences in the physical properties of these liquids.  相似文献   

4.
浙东早白垩世火山岩组合的地球化学及其成因研究   总被引:25,自引:6,他引:25  
浙东早白垩世含中性岩的火山岩组合和双峰式火山岩组合的主量元素和微量元素特征对比研究表明,中性火山岩的地球化学特征明显受到伴生的基性和酸性火山岩的影响。它们的微量元素协变关系证实:中性火山岩是由基性岩浆和酸性岩浆混合形成的。双峰式火山岩具有与含中性岩的火山岩组合相类似的主量元素特征,但两者的微量元素特征相差较大。根据东南沿海在早白垩世时期的构造背景是由挤压向伸展拉张转变,以及各种元素具有不同的扩散速度,提出了浙东早白垩世火山岩组合的形成模式:若基性岩浆和酸性岩浆仅进行了部分微量元素的交换,没有来得及发生主量元素的交换,就在伸展拉张的构造背景下喷出地表,则形成双峰式火山岩组合;若基性岩浆与酸性岩浆在地壳深处共存的时间较长,发生一定程度的主量元素交换,则形成偏基性和偏酸性的中性岩浆,若进一步发生化学成分的交换,则可形成典型的安山质岩浆,喷出地表就形成含中性岩的火山岩组合。  相似文献   

5.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

6.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

7.
We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr–143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with >?4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of <?4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures (~?4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative εNdi (??5.2 to ??9.4) and radiogenic εSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10–20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.  相似文献   

8.
Based on detailed petrological, geochemical, and isotope-geochemical study, fragments of fresh pillow lavas with chilled glass margins dredged at the Sierra-Leone test site in the axial MAR rift zone between 5° and 7°N correspond to MORB tholeiites, which are not primitive mantle melts but were differentiated in intermediate magmatic (intrusive) chambers. Small-scale geochemical and Sr-Nd isotope heterogeneities were established for the first time in the basalts and their glasses. It was shown that some samples show significant nonsystematic differences in the 87Sr/86Sr ratio between the basalts and their chilled glasses and less significant difference in ?Nd; higher Sr ratios can be observed both in the glasses and basalts of the same lava fragments. No significant correlation is observed between the isotope characteristics of the samples and their geochemistry; it was also shown that seawater did not affect the Sr and Nd isotope composition of the chilled glasses of the studied pillow lavas. It is suggested that such differences in isotope ratios are related to a small-scale heterogeneity of the melts owing to incomplete homogenization during their rapid ascent to the surface. The heterogeneity of the basaltic melts is explained by their partial contamination by the older plutonic rocks (especially gabbroids) of the lower oceanic crust, through which they ascended to the ocean floor surface. The wider scatter of the Sr isotopic ratios relative to Nd is related to the presence of xenocrysts of calcic plagioclase; correspondingly, the absence of a Nd mineral carrier in the rocks results in less distinct Nd isotope variations. It was shown that all of the studied basalts define a single trend along the mantle correlation array in the Sr-Nd isotope diagram. The causes of this phenomenon remain unclear.  相似文献   

9.
Subduction related basalts display wide ranges in large ion lithophile element ratios (e.g., Rb/Ba and Rb/ Sr) which are unlikely to result from mixing, but suggest a role for small degree partial melting of a relatively Rb-poor mantle wedge source. However, these variations do not correlate with other trace element criteria, such as the depletions of high field strength elements (HFSE) and light rare earth elements (LREE) relative to the LILE, which characterise subduction related magmatism. Integration of radiogenic isotope and trace element data demonstrates that the elemental enrichment cannot be simply related to two component mixtures inferred from isotopic variations. Thus a minimum of three components is required to describe the geochemistry of subduction zone basalts. Two are subduction related: high Sr/Nd material is derived from the dehydration of subducted basaltic ocean crust, and a low Sr/Nd component is thought to be from subducted terrigenous sediment. The third component is in the mantle wedge, it is usually similar to the source of MORB, particularly in its isotopic composition. However, in some cases, notably continental areas, more enriched mantle wedge material with relatively high 87Sr/86Sr, low 143Nd/144Nd and elevated incompatible trace element contents may be involved Mixing of these three components is capable of producing both the entire range of Sr, Nd and Pb isotope signatures observed in destructive margin basalts, and their distinctive trace element compositions. The isotope differences between Atlantic and Pacific island arc basalts are attributed to the isotope compositions of sediments in the two oceans.  相似文献   

10.
Tertiary volcanic rocks in northwestern Firoozeh, Iran (the Meshkan triangular structural unit), constitute vast outcrops (up to 250 km2) of high-Mg basaltic andesites to dacites that are associated with high-Nb hawaiites and mugearites. Whole-rock 40Ar/39Ar ages show a restricted range of 24.1 ± 0.4–22.9 ± 0.5 Ma for the volcanic rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.703800 to 0.704256 and 0.512681 to 0.512877, respectively, in the high-Mg basaltic andesites–dacites. High-Th contents (up to 11 ppm) and Sr/Y values (27–100) and the isotopic composition of the subalkaline high-Mg basaltic andesites–dacites indicate derivation from a mantle modified by slab and sediment partial melts. Evidence such as reverse zoning and resorbed textures and high Ni and Cr contents in the evolved samples indicate that magma mixing with mafic melts and concurrent fractional crystallization lead to the compositional evolution of this series. The high-Nb hawaiites and mugearites, by contrast, have a sodic alkaline affinity and are silica undersaturated; they are also enriched in Nb (up to 47 ppm) and a wide range of incompatible trace elements, including LILE, LREE, and HFSE. Geochemistry and Sr–Nd isotopic compositions of the high-Nb hawaiites and mugearites suggest derivation from a mantle source affected by lower degrees of slab melts. Post-orogenic slab break-off is suggested to have prompted the asthenospheric upwelling that triggered partial melting in mantle metasomatized by slab-derived melts.  相似文献   

11.
Major element, trace element, and Sr isotope data are used to study the temporal variation in the chemistry of the ejecta from the 1979 eruption of Soufriere volcano, St. Vincent, and to compare the compositions of the 1979 and 1971/2 magmas. Both the 1971/2 and 1979 products were basaltic andesites almost identical in petrography. A small temporal variation in chemistry is apparent in the 1979 samples but these cannot be related to the 1971/2 lava by fractional crystallisation of phenocryst phases, and the two eruptions may therefore have sampled different batches of magma. 87Sr/86Sr ratios of the two magmas were identical within analytical error.Microprobe analyses of phenocryst phases and glasses from the 1979 ejecta are presented. Clinopyroxene phenocryst cores with very high Mg/Fe ratios indicate that the basaltic andesites are products of fractionation of magnesian parents. Such magmas are represented by lavas on St. Vincent similar to the microphyric alkali picrites found to the south in Grenada. A common origin for the basaltic andesites of both islands by fractional crystallisation of picritic magmas is suggested. Dacitic glass is abundant in the groundmass of scoria blocks from the eruption. It does not represent the liquid originally in equilibrium with the phenocryst phases, but rather this liquid modified by quench crystallisation. Published interpretations suggesting that dacitic glass compositions in tephra from eruptions of the Soufriere are evidence of mixed-magma eruptions are therefore rejected.  相似文献   

12.
Mantle xenoliths hosted by the historic Volcan de San Antonio, La Palma, Canary Islands include veined spinel harzburgites and spinel dunites. Glasses and associated minerals in the vein system of veined xenoliths show a gradual transition in composition from broad veins to narrow veinlets. Broad veins contain alkali basaltic glass with semi-linear trace element patterns enriched in strongly incompatible elements. As the veins become narrower, the SiO2-contents in glass increase (46 → 67 wt% SiO2 in harzburgite, 43 → 58 wt% in dunite) and the trace element patterns change gradually to concave patterns depleted in moderately incompatible elements (e.g. HREE, Zr, Ti) relative to highly incompatible ones. The highest SiO2-contents (ca. 68% SiO2, low Ti-Fe-Mg-Ca-contents) and most extreme concave trace element patterns are exhibited by glass in unveined peridotite xenoliths. Clinopyroxenes shift from LREE-enriched augites in basaltic glass, to REE-depleted Cr-diopside in highly silicic glass. Estimates indicate that the most silicic glasses represent melts in, or near, equilibrium with their host peridotites. The observed trace element changes are compatible with formation of the silicic melts by processes involving infiltration of basaltic melts into mantle peridotite followed by reactions and crystallization. The Fe-Mg interdiffusion profiles in olivine porphyroclasts adjacent to the veins indicate a minimum period of diffusion of 600 years, implying that the reaction processes have taken place in situ in the upper mantle. The CaO-TiO2-La/Nd relationships of mantle rocks may be used to discriminate between metasomatism caused by carbonatitic and silicic melts. Unveined mantle xenoliths from La Palma and Hierro (Canary Islands) show a wide range in La/Nd ratios with relatively constant, low-CaO contents which is compatible with metasomatism of “normal” abyssal peridotite by silicic melts. Peridotite xenoliths from Tenerife show somewhat higher CaO and TiO2 contents than those from the other islands and may have been affected by basaltic or carbonatitic melts. The observed trace element signatures of ultramafic xenoliths from La Palma and other Canary Islands may be accounted for by addition of small amounts (1–7%) of highly silicic melt to unmetasomatized peridotite. Also ultramafic xenoliths from other localities, e.g. eastern Australia, show CaO-TiO2-La/Nd relationships compatible with metasomatism by silicic melts. These results suggest that silicic melts may represent important metasomatic agents. Received: 15 November 1998 / Accepted: 17 May 1999  相似文献   

13.
《Chemical Geology》2002,182(2-4):513-528
The Northern Taiwan Volcanic Zone (NTVZ) is a Late Pliocene–Quaternary volcanic field that occurred as a result of extensional collapse of the northern Taiwan mountain belt. We report here mineral compositions, major and trace element and Sr/Nd isotope data of high-Mg basaltic andesites from the Mienhuayu, a volcanic islet formed at ∼2.6 Ma in the central part of the NTVZ. The rocks are hypocrystalline, showing porphyritic texture with Mg-rich olivine (Fo≈81–80), bronzite (En≈82–79) and plagioclase (An≈66–58) as major phenocryst phases. They have uniform whole-rock compositions, marked by high magnesium (MgO≈5.9–8.1 wt.%, Mg value≈0.6) relative to accompanying silica contents (SiO2≈52.8–54.5 wt.%). The high-Mg basaltic andesites contain the highest TiO2(∼1.5 wt.%) and lowest K2O (∼0.4 wt.%) among the NTVZ volcanic rocks. In the incompatible element variation diagram, these Mienhuayu magmas exhibit mild enrichments in large ion lithophile (LILE) and light rare earth elements (LREE), coupled with an apparent Pb-positive spike. They do not display depletions in high field strength elements (HFSE), a feature observed universally in the other NTVZ volcanics. The high-Mg basaltic andesites have rather unradiogenic Nd (εNd≈+5.1–7.2) but apparently elevated Sr (87Sr/86Sr≈0.70435–0.70543; leached values) isotope ratios. Their overall geochemical and isotopic characteristics are similar to mid-Miocene (∼13 Ma) high-Mg andesites from the Iriomote-jima, southern Ryukyus, Japan. Despite these magmas have lower LILE and LREE enrichments and Pb positive spike, their “intraplate-type” incompatible element variation patterns are comparable to those of extension-induced Miocene intraplate basalts emplaced in the Taiwan–Fujian region. Therefore, we interpret the Mienhuayu magmas as silica-saturated melts derived from decompression melting of the ascended asthenosphere that had been subtly affected by the adjacent Ryukyu subduction zone processes. This interpretation is consistent with the notion that in the northern Taiwan mountain belt post-orogenic lithospheric extension started in Plio–Pleistocene time.  相似文献   

14.
The geological setting, ages, petrography and geochemistry of late Pan-African ( 580 Ma) calc-alkaline and tholeiitic dike rocks in the Bir Safsaf igneous complex of south-west Egypt are discussed. These basaltic to rhyolitic dikes intruded contemporaneously and shortly after the intrusion of granitoids. The major and trace element data, Sr and Nd isotope relations, in combination with textural observations, confirm complex interactions between most of the intermediate calcalkaline dike melts and plutonic melts, with different degrees of mixing, assimilation, replenishment and tapping of magma chambers. Trachytic and rhyolitic dikes are strongly differentiated melts from the granitic pluton. The tholeiitic dikes evolved dominantly by fractional crystallization processes. It is inferred that open system and closed system processes operated in calc-alkaline magma chambers, and that the calc-alkaline melts came from a garnet-and amphibole-bearing mantle, modified by a subduction component. Tholeiitic rocks were formed later by fractional crystallization and assimilation processes. Magma ascent of both dike types took place in an extensional environment and the presumed subduction zone has to be seen in connection with the Atmur-Delgo suture zone.  相似文献   

15.
在松辽盆地东南隆起区营城组标准剖面营三段古火山口附近识别出岩浆期后热液活动的地质记录。岩石学特征表现为隐爆角砾岩,即,原有的近火山口相岩石(原岩)被高压流体炸碎形成原地角砾、之后又被灌入的富含矿物质"岩汁"胶结形成的原地角砾岩。采集隐爆角砾岩及其上覆和下伏三个层位共10个样品进行地球化学和年代学对比研究,包括两套4个对应的原岩和岩汁、下伏4个玄武粗安岩和上覆2个流纹岩。原岩高精度~(39)Ar/~(40)Ar坪年龄113.4±0.7Ma;岩汁为含铁酸性流体的隐晶质析出物,其~(39)Ar/~(40)Ar坪年龄112.9±19.6Ma;二者的年龄差反映岩浆主期与期后热液活动的时代间隔(1Ma之内)。10个样品的共性是:(1)稀土总量中-高(∑REE=81×10~(-6)~202×10~(-6))且轻重稀土分异明显((La/Yb)_N=4.91~11.45);(2)MORB标准化蛛网图上P和部分不相容元素(Cs、Th、La和Zr)正异常,而另一部分不相容元素(Sr和Pb)负异常。整体表现为双峰式裂谷火山岩特点。主要差别在于:(1)铕和钡表现为两种情况,下伏玄武粗安岩和隐爆角砾岩中的粗面岩具正异常,而隐爆角砾岩中的流纹岩和岩汁及其上覆的流纹岩具负异常;(2)只有2个岩汁样品显示K负异常,其它8个岩石样品均为K正异常;(3)下伏玄武粗安岩(4个样)显弱的Ti正异常且Rb/Sr比低(0.04~0.05),而其它6个样品为Ti负异常且Rb/Sr比高(0.62~2.83),其中的2个岩汁样品Ti负异常最强。岩汁与其下伏粗面质原岩差别显著,而与其上覆流纹岩(SHRIMP年龄110.6Ma)的地化特征相似(见正文)。该火山期后热液活动是深源热流体萃取壳源物并沿古火山通道(构造薄弱带)运移到近地表的,可能是后续流纹质火山活动的先驱。这种高压的岩浆期后热液导致围岩炸裂、发生角砾岩化、形成大量角砾间孔和裂缝。这是造成火山口-近火山口相带成为优质储层的重要因素。该类火山岩储层改善作用早于烃类运移,可构成有利于成藏的时空配置。与该期热液活动相伴生的深源天然气早于上覆圈闭的形成,因此对成藏没有贡献。  相似文献   

16.
The elastic properties of two types of aluminosilicate (basaltic and rhyolitic) glasses have been studied using both Brillouin and Raman spectroscopy at ambient conditions. It has been found that the elastic moduli of the basaltic glasses decrease with increasing SiO2 concentration. The shear moduli displayed the least dependence on SiO2 content. The bulk moduli of the basaltic glasses strongly depend on the sum of the Q 3 and Q 4 anionic units. Among the modifiers, iron cations showed the strongest effect on the elastic properties of the rhyolitic glasses. For the elastic moduli of rhyolitic glasses, the major effect of alkaline earth cations is on shear modulus; however, both iron and alkali cations showed stronger effects on bulk modulus and similar relative contribution between bulk and shear moduli (based on the equivalent M+ cation). The dependences of elastic moduli on bulk NBO/T observed in both types of glasses suggest that the elastic modulus of an aluminosilicate glass depends on the concentration of effective modifying cations rather than the apparent concentration of all non-network-forming cations. An analysis of data also indicated that the ideal molar mixing model is failed in prediction of the elastic properties of the present multicomponent glasses by using the known parameters.  相似文献   

17.
Most rhyolite eruption episodes of Tarawera volcano have emitted several physiochemically distinct magma batches (∼1–10 km3). These episodes were separated on a millennial timescale. The magma batches were relatively homogeneous in temperature and composition at pumice scale (>4 cm), but experienced isolated crystallisation histories. At the sub-cm scale, matrix glasses have trace element compositions (Sr, Ba, Rb) that vary by factors up to 2.5, indicating incomplete mixing of separate melts. Some quartz-hosted melt inclusions are depleted in compatible trace elements (Sr, Ti, Ba) compared to enclosing matrix glasses. This could reflect re-melting of felsic crystals deeper in the crystal pile. Individual quartz crystals display a variety of cathodoluminescence brightness and Ti zoning patterns including rapid changes in melt chemistry and/or temperature (∼50–100°C), and point to multi-cycle crystallisation histories. The Tarawera magma system consisted of a crystal-rich mass containing waxing and waning melt pockets that were periodically recharged by silicic melts driven by basaltic intrusion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
大兴安岭中生代两类流纹岩成因的地球化学研究   总被引:42,自引:0,他引:42       下载免费PDF全文
葛文春  林强 《地球科学》2000,25(2):172-178
大兴安岭地区晚侏罗世—早白垩世流纹岩类广泛分布.根据岩石学和微量元素地球化学特征将其划分为两类, 分别称其为Ⅰ型流纹岩和Ⅱ型流纹岩.稀土和微量元素分析结果显示: (1) Ⅰ型流纹岩呈右倾的稀土分布曲线, 不相容元素以强烈富集Rb, Ba, Th, K和亏损Sr, Ti, P, Nb为特征, 其形成与钙碱性系列玄武岩浆的结晶分异作用有关; (2) Ⅱ型流纹岩具有与大陆裂谷流纹岩一致的稀土和不相容元素分布模式, 以Ba, Sr的强烈亏损与I型流纹岩相区别, 与碱性系列玄武岩类构成双峰式火山岩组合, 其成因与地壳岩石的非理想熔融作用相联系.两类流纹岩的形成与地幔柱上涌导致上覆岩石圈伸展作用有关.   相似文献   

19.
From 33°–42° S in central-south Chile, there are numerous volcanoes which form part of the Andean magmatic arc caused by subduction of the Nazca plate beneath western South America. The <0.3 m.y. old Laguna del Maule volcanic complex at 36° S is in a transition region between volcanoes at 33°–34° S formed dominantly of hornblende-bearing andesite and volcanoes south of 37° S dominantly composed of basalt and basaltic andesite. The Laguna del Maule complex ranges in composition from basalt (0.3 m.y.) to rhyolite (post-glacial). Although there is abundant evidence for magma mixing, basalt and rhyolite have similar Sr and Nd isotopic ratios, thereby requiring that the mixing members had the same isotopic ratios (87Sr/ 86Sr 0.70419 and 143Nd/144Nd 0.51274). In contrast, dacitic dikes and a volcanic neck which also have evidence for magma mixing are isotopically distinct. Major and trace element abundances are consistent with a genetic relationship between the basalt and rhyolite, either by low-pressure, plagioclase-dominated, fractional crystallization or by partial melting of a plagioclase-rich assemblage. There is no evidence that the rhyolites contain more of a crustal component than the associated basic volcanics.  相似文献   

20.
The Miocene northeast Honshu magmatic arc, Japan, formed at a terrestrial continental margin via a stage of spreading in a back‐arc basin (23–17 Ma) followed by multiple stages of submarine rifting (19–13 Ma). The Kuroko deposits formed during this period, with most forming during the youngest rifting stage. The mode of magma eruption changed from submarine basalt lava flows during back‐arc basin spreading to submarine bimodal basalt lava flows and abundant rhyolitic effusive rocks during the rifting stage. The basalts produced during the stage of back‐arc basin spreading are geochemically similar to mid‐ocean ridge basalt, with a depleted Sr–Nd mantle source, whereas those produced during the rifting stage possess arc signatures with an enriched mantle source. The Nb/Zr ratios of the volcanic rocks show an increase over time, indicating a temporal increase in the fertility of the source. The Nb/Zr ratios are similar in basalts and rhyolites from a given rift zone, whereas the Nd isotopic compositions of the rhyolites are less radiogenic than those of the basalts. These data suggest that the rhyolites were derived from a basaltic magma via crystal fractionation and crustal assimilation. The rhyolites associated with the Kuroko deposits are aphyric and have higher concentrations of incompatible elements than do post‐Kuroko quartz‐phyric rhyolites. These observations suggest that the aphyric rhyolite magma was derived from a relatively deep magma chamber with strong fractional crystallization. Almost all of the Kuroko deposits formed in close temporal relation to the aphyric rhyolite indicating a genetic link between the Kuroko deposits and highly differentiated rhyolitic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号