首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma.  相似文献   

2.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

3.
Fifteen zircons separated from a mafic dyke in the Chinese Altai give a concordant age population with a weighted mean 206Pb/238U age of 375.5 ± 4.8 Ma, suggesting a Devonian emplacement. On the basis of their mineralogical compositions and textures, the coeval dykes can be divided into gabbroic and doleritic types. They are both sub-alkaline, tholeiitic, characterized by similarly low SiO2 contents (45.2–52.7 wt.%) and total alkaline (K2O + Na2O = 0.99–4.93 wt.%). Rare earth element patterns of the gabbroic dykes are similar to N-MORB (La/YbN = 0.86–1.1), together with their high εNd(t) values (+ 7.6 to + 8.1), indicating that their precursor magma was mainly derived from a N-MORB-type depleted asthenospheric mantle. While the REE patterns of the doleritic dykes resemble that of E-MORB (La/YbN = 1.12–2.28), enriched in LILEs and strongly depleted in HFSEs, with relative low εNd(t) values (+ 3.4 to + 5.4) and high initial 87Sr/86Sr ratios (0.7057–0.7060). The zircon Hf isotopic analysis of the doleritic dykes give εHf(t) values from + 10.7 to + 13.8. These signatures suggest that a depleted mantle wedge metasomatized by slab-derived fluids and/or melts was possibly involved in the generation of the doleritic magma. The refractory peridotite may have been melted with variable degrees caused by upwelling of the hot asthenosphere. The petrogenesis of the mafic dykes suggest a high heat flux as a result of upwelling of the hot asthenosphere and the contrast geochemical signatures can be interpreted by a ridge subduction, which could be an important tectonic control in the accretionary process of the Chinese Altai.  相似文献   

4.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

5.
The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of ?0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.  相似文献   

6.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   

7.
南秦岭中段西乡群火山岩岩石成因   总被引:14,自引:1,他引:13  
南秦岭中段新元古代中期(730-845Ma)西乡群(自下而上包括孙家河组、大石沟组和白勉峡组)火山岩喷发于大陆板内裂谷环境。它们极有可能与导致Rodinia超大陆裂谷化裂解的地幔柱活动有关。根据岩石地球化学数据.南秦岭中段新元古代中期西乡群裂谷基性熔岩总体上属于低Ti/Y(LT,Ti/Y〈500)岩浆类型。LT熔岩又可进一步划分为LT1和LT2等2个亚类。LT1熔岩以高Nb/La(0.87~0.98)、低Thw/NbN(≈1)、缺乏Nb—Ta和Ti的亏损、具有“大隆起”式微量元素原始地幔标准化分配型式、(^87SrSr^86Sr)(t)=0.703869、εNd(t)=4.83为特征,属于拉斑玄武质岩浆系列;LT2熔岩以低Nb/La(〈0.75)、高ThN/NbN(〉1.4)、Nb—Ta和Ti亏损明显和Sr—Nd同位索比值变化较大为特征。元素和同位素数据表明,西乡群裂谷火山岩的化学变化不是由一个共同的母岩浆结晶分异作用所产生。孙家河组、大石沟组和自勉峡组中TiO2含量大于1.09%的火山岩的母岩浆经受了辉长岩质结晶分离作用。而白勉峡组中TiO2含量小于0.69%的基性熔岩的化学演化则是受控于单斜辉石(cpx)±橄榄石(ol)结晶分离作用。西乡群火山岩系中,基性、中性和酸性熔岩间为分异结晶关系。南秦岭中段新元古代中期西乡群裂谷火山岩系极有可能是源于共同的地幔柱,该地幔柱组分的成分为;εNd(t)≈+5,^87Sr/^86Sr(t)≈0.704,La/Nb≈0.7。南秦岭中段新元古代中期西乡群裂谷基性熔岩存在空间上的地球化学变化:LT1熔岩的母岩浆,没有受到明显的大陆岩石圈混染,保存了鲜明的地幔柱信号;而大陆地壳或大陆岩石圈混染作用对于LT2熔岩的形成则有着重要贡献。研究揭示,南秦岭中段新元古代中期西乡群裂谷基性熔岩的母岩浆总体上产生于上涌地幔柱上部层位(地幔柱头)3GPa?  相似文献   

8.
The Xilamulun belt along the northern part of the North China Craton is located in eastern segment of the Central Asian Orogenic Belt and has great economic potential for Mo–Cu mineralization. More than ten medium to large ore deposits have been discovered in this region in the recent years. The major types of mineralization type include porphyry (Chehugou Mo–Cu, Kulitou Mo–Cu, Xiaodonggou Mo and Jiguanshan Mo), quartz vein (Nianzigou Mo, Xinjing Mo), epithermal (Hongshanzi Mo–U) and alteration assemblage (Liulingou Mo). The timing of mineralization was previously thought to be Yanshanian (208–290 Ma), however, Indosinian (260–208 Ma) ages for intrusions and mineralization have been recognized in recent years. Based on geochronologic data and regional geological evidence, it is suggested that the mineralization in the Xilamulun belt was formed during multiple events. The mineralization processes are related to a post-collisional extension stage (~ 258–210 Ma) with the generation of the porphyry molybdenum–copper deposit, a tectonic stress transformation from NS to EW (~ 185–150 Ma) that gave rise to vein or porphyry molybdenum deposit, and a lithospheric thinning stage (~ 140–110 Ma) with porphyry molybdenum deposit.  相似文献   

9.
A major consequence of the interaction of a plume with an oceanic ridge is the enhanced melt production and associated crust generation. In the case of Iceland crustal thickness as large as 20 to 40 km has been reported. Crustal seismic velocities are high, and have to be explained by thermal or chemical effects. In the first part of the paper we address the question whether extraction of melt out of the plume beneath a slowly spreading ridge and deposition of extracted basalt volumes at the surface produces a dynamic feedback mechanism on mantle melting. To study this question we solve the convection equations for a ridge centred plume with non-Newtonian rheology including melting, melt extraction associated with deposition of cold crust at the surface of the model, and using a simplified approach for compaction. The assumption of cold crust is justified if the thickness of each deposited basaltic layer is less than roughly 1 km. Depending on the buoyancy flux of the plume, crustal thicknesses between 10 and 40 km are modelled, showing characteristic dipping structures resembling the rift-ward dipping basaltic layers of East- and Western Iceland. Comparing the resulting crustal thickness and magma generation rate with models in which the dynamic effect of crust deposition has been suppressed indicates, that melt generation beneath a slowly spreading ridge is considerably damped by the dynamic feedback mechanism if the plume buoyancy flux exceeds 400 to 600 kg/s. Based on the observed crustal thickness of Iceland our models predict a plume buoyancy flux of 1140 kg/s.In the second part we study the accretion of the Icelandic crust by a thermo-mechanical model in more detail based on the Navier–Stokes-, the heat transport and the mass conservation equations including volumetric sources. Hot (1200 °C) molten crustal material is injected into the newly forming crust with a constant rate at different crustal source regions: a) deep, widespread emplacement of dykes and sills including crustal underplating, b) magma chambers at shallow to mid-crustal level, and c) surface extrusions and intrusions in fissure swarms at shallow depth connected to volcanic centres. We identify the material from the different source regions by a marker approach. Varying the relative dominance of these source regions, characteristic crustal structures evolve, showing shallow dipping upper crustal layers with dip angles between 10 and 15°. The thermal structure of the crust varies between cold crust (shallow-source region dominating) and hot crust (deep-source region dominating). We use observations of maximum depth of seismicity to constrain the depth of the 650 °C isotherm and seismological inferences on the lower crust to constrain temperatures in that region. The best agreement with our models is achieved for crust formation dominated by deep dykes and underplating with a considerable influence of magma chamber accretion.  相似文献   

10.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

11.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

12.
The Rooiberg Group is a 6-km-thick sequence of mostly volcanic rocks, which represent the first phase of magmatic activity associated with the Bushveld Complex. These strata include, in ascending stratigraphic order, the Dullstroom, Damwal, Kwaggasnek, and Schrikkloof Formations. Units of the lower Dullstroom Formation range from basalts to andesites and comprise two compositional suites: high Ti and low Ti. Compositional data indicate that melts represented by the overlying, more siliceous volcanic rocks, which include dacites and rhyolites, were derived from low Ti melts by fractional crystallization and assimilation of crustal material (AFC processes).

Rb–Sr isotopic data (28 samples) for units of the Dullstroom and Damwal Formations loosely constrain a crystallization age of 2071+94/−65 Ma (these errors and those below: 95% confidence limits), which agrees with previously reported age data. These data suggest an initial value for 87Sr/86Sr of 0.70655+0.00087/−0.00051 for the Rooiberg Group. In contrast, Rb–Sr isotopic compositions of six samples of the Kwaggasnek Formation indicate post-crystallization alteration, which was probably associated with the Lebowa Granite Suite of the Bushveld Complex. Sm–Nd isotopic data (29 samples) for volcanic units of the Rooiberg Group provide a poorly constrained age of 1837+360/−320 Ma with an initial value for 143Nd/144Nd of 0.50976+0.00026/−0.00035. These Rb–Sr and Sm–Nd isotopic compositions are similar to those indicated for melts that crystallized to form the Rustenburg Layered Suite (RLS) of the Bushveld Complex. Extruded and intruded melts probably were derived from the same or similar sources and may have resided in the same magma chambers before emplacement.  相似文献   


13.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

14.
<正>Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.  相似文献   

15.
华南新元古代中期(746-827Ma)双峰式(玄武岩-流纹岩)火山岩喷发于大陆板内裂谷环境。它们极有可能与导致Rodinia超大陆裂谷化-裂解的地幔柱(或超级地幔柱)活动有关。根据岩石地球化学数据,华南新元古代中期裂谷基性熔岩可以划分为高Ti/Y(HT,Ti/Y〉500)和低Ti/Y(LT,Ti/Y〈500)两个岩浆类型。HT熔岩又可进一步划分为HT1和HT2等两个亚类。HT1熔岩主要分部于华南中-西部裂谷盆地之中,总体上属于碱性玄武质岩浆系列;HT2和LT熔岩主要分布于华南中-东部裂谷盆地之中,总体上属于拉斑玄武质岩浆系列。元素和同位素数据表明,华南新元古代中期裂谷基性熔岩的化学变化不是由一个共同的母岩浆结晶分异作用所产生。华南中-西部地区裂谷基性熔岩的母岩浆经受了辉长岩质结晶分离作用,而华南中-东部地区裂谷基性熔岩的化学演化则是受控于单斜辉石(cpx)士橄榄石(01)结晶分离作用。各个双峰式火山岩系中,基性和酸性熔岩间为分异结晶关系。华南新元古代中期裂谷火山岩系极有可能是源于共同的地幔柱,该地幔柱组分的成分为:eNd(f)≈+6,Mg#≈0.7,La/Nb≈0.7。华南新元古代中期裂谷基性熔岩存在空间上的地球化学变化:华南中一西部HT1熔岩的母岩浆,没有受到明显的大陆岩石圈混染,保存了鲜明的地幔柱信号;而大陆地壳或大陆岩石圈混染作用对于华南中-东部LT和HT2熔岩的形成则有着重要贡献。研究揭示,华南新元古代中期裂谷基性熔岩的母岩浆总体上产生于上涌地幔柱较深层位的石榴子石稳定区(深度:100~130km)。中-西部裂谷基性熔岩的母岩浆(碱性玄武质)产生于深度较大(~130km)、部分熔融程度较低(〈10%)的条件下,中-东部裂谷基性熔岩的母岩浆(拉斑玄武质)产生于深度稍浅(~100km)?  相似文献   

16.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

17.
L.I. Panina  L.M. Usoltseva 《Lithos》2008,103(3-4):431-444
To find out the reasons responsible for the diversity of igneous rocks forming the alkaline-ultrabasic carbonatite Krestovskiy massif (the Maimecha–Kotui province, Russia) we have studied melt inclusions in clinopyroxene of trachydolerites, porphyric melanephelinites, and tholeiites. It was established that the homogenization temperatures of inclusions in these rocks are rather close: 1140–1180 °C, 1190–1230 °C, and 1150–1210 °C, respectively. Compositions of melt inclusions in clinopyroxenes from different rocks are significantly different. The chemical composition of clinopyroxene of trachydolerites corresponds to that of trachybasalts and their derivatives. The inclusions are enriched in Sr, Ba, P, and S and their total sum of alkalies (at K ≥ Na) is never less than 5–6 wt.%. Inclusions from the rims of clinopyroxene phenocrysts in porphyric melanephelinites are similar in composition also to inclusions in trachydolerites. But in the cores of clinopyroxene phenocrysts the composition of inclusions corresponds to nephelinite melt. The composition of some melt inclusions in the intermediate and cores zones of clinopyroxene from porphyric melanephelinite has high SiO2 (53–55 wt.%), MgO (8–9 wt.%) and a low (1–2 wt.%) total sum of alkalies (at Na ≥ K) and is depleted in Al2O3 (6–7 wt.%), which is similar to the composition of basaltic komatiites. The composition of inclusions in tholeiites is also basic, highly magnesian, and low-alkaline, Sr and Ba are rare to absent. Compared to the inclusions of basaltic komatiite composition, the inclusions in tholeiites are enriched in Al and depleted in Ca, Ti, and P. The melts trapped in clinopyroxenes from different rocks contain low (0.014–0.018 wt.%) water but they are enriched in F: from 0.37 wt.% in nephelinite melts to 0.1–0.06 wt.% in tholeiite and basaltic komatiite melts. Inclusions in all the rocks under study, host clinopyroxene, and the rocks themselves are significantly enriched in incompatible elements (1–2 orders of magnitude relative to the mantle norm). In tholeiites, the partitioning of these elements is rather uniform, while in trachydolerites and especially in melanephelinites it is contrasting with a drastic depletion in HREE relative to LREE, MREE, and HFSE. A conclusion is made that the Krestovskiy massif was formed by no less than three mantle-derived magmas: melanephelinite, tholeiite and basaltic komatiite. Magmas were generated in different magma sources at different depths with various degrees of enrichment in incompatible elements. These magmas were, most likely, dominated by melanephelinite magma. In intermediate chambers this magma differentiated to form derivative melts of nephelinite, trachydolerite–trachyandesite–trachyte compositions. Komatiite-basalt melts were, most likely, derivatives of primitive meimechite magmas.  相似文献   

18.
19.
Leucogranites are important in understanding intracrustal differentiation and regional tectonic evolution, but how these rocks form remains a matter of much debate. The Luoza batholith in the central Lhasa subterrane provides an important opportunity to address these issues as this batholith consists of normal calc-alkaline S-type granodiorites (Group 1) and highly fractionated S-type leucogranites (Group 2). Laser Ablation Inductively Coupled Plasma Mass Spectrometry zircon U-Pb dating indicates that these rocks were emplaced at ca. 221–205 Ma. The Group 1 samples (ca. 205 Ma) have low SiO2 content (64–67 wt%) and low differentiation index values (DI = 75–76), and are slightly depleted in Ba, P, Sr, and Ti compared to the Group 2 samples (ca. 221 Ma and 213 Ma), which have high SiO2 content (74–75 wt%), high differentiation index values (91–94), and are significantly depleted in Ba, P, Sr, and Ti. Samples from Group 1 and Group 2 exhibit similar zircon εHf(t) values (−15.6 to −1.4), both of which are significantly higher than melts from the pure ancient basement in the central Lhasa subterrane (−20.5 to −10.6). The Group 1 samples can be interpreted as having been derived from the partial melting of metagreywacke within the ancient basement in the central Lhasa subterrane with contributions from mantle- or juvenile- crust-derived components, whereas the Group 2 samples may have formed via varying degrees of fractional crystallization of different minerals (e.g., plagioclase ± K-feldspar, biotite, zircon, allanite/monazite, titanite, and apatite) from the parental magmas, represented by the granodioritic samples in Group 1, in shallow crustal magma chambers. In combination with sedimentary records, the high-temperature and low-pressure conditions indicated by the Group 1 samples can be geodynamically linked to a back-arc extensional setting in response to the southward subduction of the Bangong-Nujiang Tethys Ocean seafloor. Our work implies that fractional crystallization is likely a feasible mechanism for the development of leucogranites and for explaining the compositional diversity of the granite during intracrustal differentiation.  相似文献   

20.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号