首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ensemble regional model simulations over the central US with 30-km resolution are analyzed to investigate the physical processes of projected precipitation changes in the mid-twenty-first century under greenhouse gas forcing. An atmospheric moisture balance is constructed, and changes in the diurnal cycle are evaluated. Wetter conditions over the central US in April and May occur most strongly in the afternoon and evening, supported primarily by moisture convergence by transient eddy activity, indicating enhanced daytime convection. In June, increased rainfall over the northern Great Plains is strongest from 0000 to 0600 LT. It is supported by positive changes in stationary meridional moisture convergence related to a strengthening of the GPLLJ accompanied by an intensification of the western extension of the North Atlantic subtropical high. In the Midwest, decreased rainfall is strongest at 1500 LT and 0000 LT. Both a suppression of daytime convection as well as changes in the zonal flow in the GPLLJ exit region are important. Future drying over the northern Great Plains in summer is triggered by weakened daytime convection, and persists throughout August and September when a deficit in soil moisture develops and land–atmosphere feedbacks become increasingly important.  相似文献   

2.
We quantify the vulnerability of water supply to shortage for the Colorado River Basin and basins of the High Plains and California and assess the sensitivity of their water supply system to future changes in the statistical variability of supply and demand. We do so for current conditions and future socio-economic scenarios within a probabilistic framework that incorporates the inherent uncertainties in the drivers of vulnerability. Our analysis indicates that the most sensitive basins to both current and future variability of demand and supply are the Central California and the San Joaquin-Tulare basins. Large sensitivity is also found for the Kansas basin of the High Plains. Within the Colorado River Basin, the Lower Colorado and Gila were found to be the most vulnerable and sensitive sub-basins. By accounting for future uncertainty within the above probabilistic framework, this study unveils and isolates the individual responses of a given basin to changes in the statistical properties of demand and supply and offers a valuable tool for the identification of policy strategies and adaptation measures.  相似文献   

3.
Global warming and 21st century drying   总被引:6,自引:0,他引:6  
Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both precipitation and PET changes increase the percentage of global land area projected to experience at least moderate drying (PDSI standard deviation of ≤?1) by the end of the twenty-first century from 12 to 30 %. PET induced moderate drying is even more severe in the SPEI projections (SPEI standard deviation of ≤?1; 11 to 44 %), although this is likely less meaningful because much of the PET induced drying in the SPEI occurs in the aforementioned arid regions. Integrated accounting of both the supply and demand sides of the surface moisture balance is therefore critical for characterizing the full range of projected drought risks tied to increasing greenhouse gases and associated warming of the climate system.  相似文献   

4.
Influence of modern land cover on the climate of the United States   总被引:2,自引:0,他引:2  
I have used a high-resolution nested climate modeling system to test the sensitivity of regional and local climate to the modern non-urban land cover distribution of the continental United States. The dominant climate response is cooling of surface air temperatures, particularly during the warm-season. Areas of statistically significant cooling include areas of the Great Plains where crop/mixed farming has replaced short grass, areas of the Midwest and southern Texas where crop/mixed farming has replaced interrupted forest, and areas of the western United States containing irrigated crops. This statistically significant warm-season cooling is driven by changes in both surface moisture balance and surface albedo, with changes in surface moisture balance dominating in the Great Plains and western United States, changes in surface albedo dominating in the Midwest, and both effects contributing to warm-season cooling over southern Texas. The simulated changes in surface moisture and energy fluxes also influence the warm-season atmospheric dynamics, creating greater moisture availability in the lower atmosphere and enhanced uplift aloft, consistent with the enhanced warm-season precipitation seen in the simulation with modern land cover. The local and regional climate response is of a similar magnitude to that projected for future greenhouse gas concentrations, suggesting that the climatic effects of land cover change should be carefully considered when crafting policies for regulating land use and for managing anthropogenic forcing of the climate system.  相似文献   

5.
A regional climate model (RCM) constrained by future anomalies averaged from atmosphere–ocean general circulation model (AOGCM) simulations is used to generate mid-twenty-first century climate change predictions at 30-km resolution over the central U.S. The predictions are compared with those from 15 AOGCM and 7 RCM dynamic downscaling simulations to identify common climate change signals. There is strong agreement among the multi-model ensemble in predicting wetter conditions in April and May over the northern Great Plains and drier conditions over the southern Great Plains in June through August for the mid-twenty-first century. Projected changes in extreme daily precipitation are statistically significant over only a limited portion of the central U.S. in the RCM constrained with future anomalies. Projected changes in monthly mean 2-m air temperature are generally consistent across the AOGCM ensemble average, North American Regional Climate Change Assessment Program RCM ensemble average, and RCM constrained with future anomalies, which produce a maximum increase in August of 2.4–2.9 K over the northern and southern Great Plains and Midwest. Changes in extremes in daily 2-m air temperature from the RCM downscaled with anomalies are statistically significant over nearly the entire Great Plains and Midwest and indicate a positive shift in the warm tail of the daily 2-m temperature distribution that is larger than the positive shift in the cold tail.  相似文献   

6.
A parametric crop water use and yield model was applied to a transect spanning the North American Great Plains to investigate the evapotranspiration demand on grain corn and the associated irrigation water applications needed for optimal crop production. The transect consisted of four sample stations, covering 25 degrees of latitude. 124 climate change scenarios for each of the transect stations, were created by systematically changing air temperature, precipitation, and incident solar radiation in terms of positive and negative departures from the normal, long-term record. This paper reports how grain corn evapotranspiration and irrigation water amounts would respond to climatic changes inherent in the scenarios if there were no changes in agricultural technology. Among the results, the seasonal response of evapotranspiration (ET) totals to air temperature perturbations was greatest in the higher latitudes and least in the lower latitudes. This impact of changing temperature was also greatest under sunny compared with cloudy conditions, and for fully irrigated in contrast to rainfed conditions. Changes in precipitation amounts caused greatest responses in rainfed fields under sunny conditions. The middle latitudes (e.g., Kansas City) were most sensitive. Perturbing solar radiation caused greatest evapotranspiration changes with irrigated conditions particularly in the middle latitudes. Percentage changes in solar radiation (or cloudiness) were of considerably greater importance than comparable precipitation changes. In the absence of temperature perturbations, the relative precipitation and solar radiation changes caused similar trends in amount of irrigation water applied. For temperature changes, the resultant irrigation watering responses were largely non-linear. A consecutive paper will report on the response of maize yield to the introduced climatic changes and associated irrigation schedules.Dr. Liverman was also affiliated with the National Center for Atmospheric Research, which is sponsored by the National Science Foundation. She is currently at the Department of Geography, University of Wiscon, Madison, WI.P. A. O'Rourke and P. E. Todhunter. Dr. O'Rourke is a Visiting Scholar at UCLA from Litton System, Inc., Data Systems Division.  相似文献   

7.
This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (I m ), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2?K) and PET (3–10?mm?month?1), and greater precipitation (4–10?mm?month?1). Collectively, they result in moderate increases in I m . Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies.  相似文献   

8.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

9.
In a prior paper (Part I), the point was made that, assuming an unchanged climate, water use efficiency in agricultural crop production will likely be favored by the increase in CO2 concentration projected to occur within the next half century. Since climatic changeis likely to result from the CO2 concentration increase, its possible impacts on agricultural productivity must also be considered. An attempt to do so, using the Great Plains region of North America as a case study, is reported in this paper (Part II). A number of climatic models predict significant increases in surface temperature. Manabe and Wetherald's (1980) model provides the most specific projections for a hypothetical Northern hemisphere continent. That model also predicts an intensification of the hydrologic cycle with rainfall distribution altered so that some zones will receive more and some less as a result of a doubling in the atmospheric CO2 concentration. The zone between 37 and 47° N latitude will suffer a reduction in availability of soil moisture. A number of regression models of grain yield as a function of temperature and precipitation have been used to anticipate the impacts of the projected climatic changes. The value of this approach is questioned. An alternative approach - the study of the migration of major agricultural crops across strong climatic gradients - is proposed. Changes in the geographical distribution of the hard red winter wheat zone in North America provide an example. The point is also made that factorscurrently limiting food production must be considered in order to predict the possible impacts of any given climatic change. In the central Great Plains today, the energy consumed by evapotranspiration often exceeds that supplied by net radiation since sensible heat advection from dryer regions to the south and west provides a major additional input of energy. If, as models project, the excess of precipitation over evaporation increases south of 37° N, the advection of sensible heat and, hence, the rates of evapotranspiration and degree of water stress on growing plants could be reduced in the adjacent regions to the north. Published as Paper No. 6123, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11-033 and Nebraska Agricultural Station Project 11-049. George Holmes Professor of Agricultural Meteorology, Center for Agricultural Meteorology and Climatology, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska, 68583-0728.  相似文献   

10.
Playa wetlands on the west-central Great Plains of North America are vulnerable to sediment infilling from upland agriculture, putting at risk several important ecosystem services as well as essential habitats and food resources of diverse wetland-dependent biota. Climate predictions for this semi-arid area indicate reduced precipitation which may alter rates of erosion, runoff, and sedimentation of playas. We forecasted erosion rates, sediment depths, and resultant playa wetland depths across the west-central Great Plains and examined the relative roles of land use context and projected changes in precipitation in the sedimentation process. We estimated erosion with the Revised Universal Soil Loss Equation (RUSLE) using historic values and downscaled precipitation predictions from three general circulation models and three emissions scenarios. We calibrated RUSLE results using field sediment measurements. RUSLE is appealing for regional scale modeling because it uses climate forecasts with monthly resolution and other widely available values including soil texture, slope and land use. Sediment accumulation rates will continue near historic levels through 2070 and will be sufficient to cause most playas (if not already filled) to fill with sediment within the next 100 years in the absence of mitigation. Land use surrounding the playa, whether grassland or tilled cropland, is more influential in sediment accumulation than climate-driven precipitation change.  相似文献   

11.
Climate extremes indices are evaluated for the northeast United States and adjacent Canada (Northeast) using gridded observations and twenty-three CMIP5 coupled models. Previous results have demonstrated observed increases in warm and wet extremes and decreases in cold extremes, consistent with changes expected in a warming world. Here, a significant shift is found in the distribution of observed total annual precipitation over 1981-2010. In addition, significant positive trends are seen in all observed wet precipitation indices over 1951-2010. For the Northeast region, CMIP5 models project significant shifts in the distributions of most temperature and precipitation indices by 2041-2070. By the late century, the coldest (driest) future extremes are projected to be warmer (wetter) than the warmest (wettest) extremes at present. The multimodel interquartile range compares well with observations, providing a measure of confidence in the projections in this region. Spatial analysis suggests that the largest increases in heavy precipitation extremes are projected for northern, coastal, and mountainous areas. Results suggest that the projected increase in total annual precipitation is strongly influenced by increases in winter wet extremes. The largest decreases in cold extremes are projected for northern and interior portions of the Northeast, while the largest increases in summer warm extremes are projected for densely populated southern, central, and coastal areas. This study provides a regional analysis and verification of the latest generation of CMIP global models specifically for the Northeast, useful to stakeholders focused on understanding and adapting to climate change and its impacts in the region.  相似文献   

12.
利用山西108个国家级地面气象观测站1979—2018年日降水量资料,采用百分位法定义极端降水事件,应用气候趋势系数、Mann-Kendall (M-K)检验等方法,研究山西极端降水特征及其变化规律。结果表明:(1)山西极端降水出现在3—10月之间,发生频次呈现“山区多、盆地少”的特点,平均强度表现为“北中部小、南部大”的空间分布特征。(2)山西极端降水持续时间以1 d为主,局地性特征明显,发生大范围极端降水事件的概率较低。(3)近40年,山西极端降水事件呈明显增多趋势,影响范围不断扩大,强度略有增强,没有突变发生。各区域极端降水的长期变化差异较大;北部强度显著增强,范围明显扩大且在1986年发生突变;中部极端降水日数和强度显著增多增强,并分别在2001、1992年发生突变;南部极端降水变化趋势微弱。  相似文献   

13.
利用中亚地区30个观测台站逐月降水资料及同期ERA-40再分析资料,结合8个CMIP5全球气候模式模拟与未来预估大尺度环流场,使用基于变形典型相关分析的统计降尺度方法(BP-CCA)建立降尺度模型,评估多个气候模式对当前气候下中亚地区春季降水的降尺度模拟能力,并对春季降水进行降尺度集合未来预估。结果表明,建立的降尺度模型能够很好地模拟出交叉检验期内春季降水的时间变化和空间结构:降尺度春季降水与相应观测序列的平均时间相关系数为0.35,最高为0.62,平均空间相关系数为0.87。气候模式对中亚春季降水的模拟能力通过降尺度方法得到了显著提高:8个模式降尺度后模拟的降水气候平均态相对误差绝对值降至0.2%—8%,相比降尺度前减小了10%—60%,模拟的降水量场与相应观测场的空间相关均超过0.77;对比降尺度前多模式集合结果,多模式降尺度集合模拟的相对误差绝对值由64%减小至4%,空间相关系数由0.47增大至0.81,标准化均方根误差降至0.59,且多模式降尺度集合结果优于大部分单个模式降尺度结果。多模式降尺度集合预估结果表明,在RCP4.5排放情景下,21世纪前期(2016—2035年)、中期(2046—2065年)和末期(2081—2100年)的全区平均降水变化率分别为-5.3%、3.0%和17.4%。21世纪前期中亚大部分地区降水呈减少趋势,降水呈增多趋势的站点主要分布在南部。21世纪中期整体降水变化率由减少变为增多趋势,21世纪末期中亚大部分台站降水增多较为明显。21世纪初期和末期可信度高的台站均主要位于中亚西部地区。  相似文献   

14.
研究黄河流域植被的时空变化及其影响因素,对生态文明建设政策的制定具有重要意义。基于2001~2020年MODIS(Moderate Resolution Imaging Spectroradiometer)植被指数(Normalized Different Vegetation Index,NDVI)数据集及同期气象数据,运用均值法、一元线性回归、偏相关性分析和回归残差法等方法研究了近20年黄河流域植被时空变化及驱动因素。结果表明:黄河流域NDVI整体呈上升趋势并具有较大的空间异质性,其中黄河中游NDVI增长幅度最大,为0.0496(10 a)^(-1)。生长季受降水和沿黄灌区耕作的影响,西部地区、东南部区域和宁夏平原、河套平原植被指数明显较高;从整个流域来看,降水和温度变化对NDVI的贡献分别为32.6%和15.9%,其中降水对NDVI变化的贡献主要体现在黄河上游(50.7%),而温度的贡献则在黄河下游表现最突出(32.3%);20年来,人类活动和气候变化分别对黄河流域植被变化贡献了78%和22%,其中人类活动贡献率超过80%的区域主要集中在黄土高原中部区域;整个黄河流域NDVI与干旱程度有显著的正相关性,尤其在陇中黄土高原和河东沙区等区域。黄河上游NDVI与改进的帕默尔干旱指数scPDSI的相关性最高,而下游相对较低。  相似文献   

15.
We analyzed the evolution of surface relative humidity (RH) and specific humidity (q) in Spain, based on complete records available from the State Meteorological Agency of Spain. The surface RH records used span the period 1920–2011, but because of spatial and temporal constraints in the dataset we used a subset of the data, covering the period 1961–2011. The subset contained 50 monthly series of RH, which were created through a process of quality control, reconstruction and homogenization. The data shows that there was a large decrease in RH over mainland Spain from 1961 to 2011, which was greatest in spring and summer. In contrast, there was no overall change in the specific humidity in this period, except in spring, when an increase was observed. The decrease in RH affected the entire country, but the changes in specific humidity were less homogeneous. For specific humidity there was a general increase in the northern and eastern parts of Spain, whereas negative trends dominated in the central and southern areas, mainly during the summer months. The results suggest that an increase in the water holding capacity of the atmosphere as a consequence of warming during recent decades has not been accompanied by an increase in the surface water vapor content, probably because the supply of water vapor from the main terrestrial and oceanic areas has been constrained. We discuss the implications of these findings for evapotranspiration processes, precipitation and water management in Spain.  相似文献   

16.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors.  相似文献   

17.
A model computation on the evaporative demand in relation to precipitation indicated that, under a changing climate with elevating temperatures, evapotranspiration could exceed the concurrent precipitation during the growing period in southern Finland (61° N), but not in northern Finland (66° N). This could reduce the supply of soil water to enable tree growth on sites with soil of low water holding capacity. This in turn could reduce the productivity of Scots pine more in southern Finland than in northern Finland. In northern Finland, the reduction in growth due to a limited supply of water was partly compensated by the enhanced growth due to a rise in temperature outside dry periods.  相似文献   

18.
The current study presents an assessment of the impact of climate change on water yield, one of the main hydrological ecosystem services, in northern Patagonia. The outputs of regional climate models from the CORDEX Project for South America were used to drive the InVEST water yield model. CORDEX regional climate models project for the far future (2071–2100) an increase in temperature higher than 1.5 °C and a precipitation decrease ranging from − 10 to − 30% for the study area. The projected warmer and dryer climate emerges as a robust signal based on model agreement and on consistent physical drivers of these changes. Moreover, both the projected increase in evapotranspiration and the decrease in precipitation contribute to a strong decrease in water yield of around − 20 to − 40% in the headwaters of northern Patagonian watersheds. Comparison of the results in the two basins reveals that the land cover may be considered a buffer of water yield changes and highlights the key role of protected areas in reducing the vulnerability of water resources to climate change.  相似文献   

19.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

20.
为预估全球变暖背景下中国西南地区未来暴雨洪涝灾害风险的变化特征,研究挑选5个CMIP6模式和5个极端降水指数,结合地形因子、社会经济数据和耕地面积百分比,构建暴雨洪涝灾害风险评估模型,对西南暴雨洪涝灾害风险进行基准期(1995-2014年)评估、未来两个时期(2021-2040年,2041-2060年)3种情景(SSP...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号