首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Nitrogen loadings to coastal waters have increased over the last century, resulting in deterioration in water quality. In this study we investigated the distributions and seasonality of dissolved organic nitrogen (DON), and its relationship to total dissolved nitrogen (TDN), for two anthropogenically influenced estuarine systems in southwest England. Concentrations of DON in both estuaries were generally < 80 μM. DON showed non-conservative distributions, resulting from external and internal inputs and in situ reactivity. DON contributed 38 ± 22% (range 4–79%, Yealm) and 36 ± 17% (range 4–84%, Plym) to the TDN pool, with lower values generally observed in the fresher samples relative to the more saline samples. DON was a larger fraction of the TDN pool during the summer and autumn relative to winter and spring, indicating the influence of bacterioplankton release on nitrogen cycling in the estuaries. Ammonification and nitrification were observed in the estuaries, processes which were reproduced in incubation experiments using bioreactors. The bioreactor experiments showed that 12% h− 1 of the DON flux from the River Plym may be available to bacteria, indicating significant removal of DON during the residence time of the water in the estuary (a few days). The bioavailable nature of the DON means that this N fraction significantly adds to the eutrophication burden of the receiving coastal waters, and therefore cannot be ignored in environmental assessments.  相似文献   

2.
Marine colloidal material (1 kDa–0.2 μm) was isolated by cross-flow ultrafiltration followed by diafiltration and freeze-drying from surface waters of the Gulf of Mexico and the Middle Atlantic Bight (MAB), as well as from estuarine waters of Galveston Bay. Elemental characterization of isolated colloidal material included organic carbon (OC) and selected trace metal (Cu, Pb, Zn, Cd, Co, Ni, Cr, Be, Fe, Al, Mn, V, Ba, and Ti) determinations. It was found that levels of these metals in marine colloids ranged from <0.1 to 50 μg/g colloidal matter, except for Fe which generally had a concentration >120 μg/g. Most metals (Cu, Pb, Zn, Ni, Al, Mn, V, and Ti) had an average concentration >1 μg/g while concentrations of Cd, Co and Be were usually <1 μg/g. Metal concentrations (μg/g) in isolated colloids were, in general, higher in Galveston Bay than in the Gulf of Mexico, suggesting either high abundance of trace metals in estuarine waters or differences in organic matter composition. Higher colloidal metal concentrations in the MAB than in the Gulf of Mexico might be due to higher terrestrial inputs in the MAB. Colloidal metal concentrations (μg/g) were generally lower than those in average soils, continental crust and suspended particles. However, metal/aluminum ratios (Me/Al) in isolated marine colloids were significantly higher than those for average soils and continental crust. Most importantly, colloids had a metal composition and metal/OC ratio (Me/C) similar to humic substances and marine plankton, suggesting that marine colloids largely originate from planktonic sources and are composed of predominately organic components. The Me/C ratios of Galveston Bay colloids followed the sequence of Cu>Ni, Cr, Zn>Mn>Co>Pb, Cd, which is similar to the Irving–Williams order except for Mn, suggesting that the interaction of metals with marine colloids is determined by the affinity of metals for specific organic ligands.  相似文献   

3.
Nutrient and chlorophyll concentrations were measured in January 1997, 1998 and 1999 in the Gulf of the Farallones, CA at locations stretching north/south from Point Reyes to Half Moon Bay, and seaward from the Golden Gate to the Farallon Islands. The cruises were all carried out during periods of high river flow, but under different climatological conditions with 1997 conditions described as relatively typical or ‘neutral/normal’, compared to the El Niño warmer water temperatures in 1998, and the cooler La Niña conditions in 1999. Near-shore sea-surface temperatures ranged from cold (9.5–10.5°C) during La Niña 1999, to average (11–13°C) during 1997 to warm (13.5–15°C) during El Niño 1998. Nutrients are supplied to the Gulf of the Farallones both from San Francisco Bay (SFB) and from oceanic sources, e.g. coastal upwelling near Point Reyes. Nutrient supplies are strongly influenced by the seasonal cycle of fall calms, with storms (commencing in January), and the spring transition to high pressure and northerly upwelling favorable winds. The major effect of El Niño and La Niña climatic conditions was to modulate the relative contribution of SFB to nutrient concentrations in the coastal waters of the Gulf of the Farallones; this was intensified during the El Niño winter and reduced during La Niña. During January 1998 (El Niño) the oceanic water was warm and had low or undetectable nitrate, that did not reach the coast. Instead, SFB dominated the supply of nutrients to the coastal waters. Additionally, these data indicate that silicate may be a good tracker of SFB water. In January, delta outflow into SFB produces low salinity, high silicate, high nitrate water that exits the bay at the Golden Gate and is advected northward along the coast. This occurred in both 1997 and 1998. However during January 1999, a La Niña, this SFB feature was reduced and the near-shore water was more characteristic of high salinity oceanic water penetrated all the way to the coast and was cold (10°C) and nutrient rich (16 μM NO3, 30 μM Si(OH)4). January chlorophyll concentrations ranged from 1–1.5 μg l−1 in all years with the highest values measured in 1999 (2.5–3 μg l−1) as a result of elevated nutrients in the area. The impact of climatic conditions on chlorophyll concentrations was not as pronounced as might be expected from the high temperatures and low nutrient concentrations measured offshore during El Niño due to the sustained supply of nutrients from the Bay supporting continued primary production.  相似文献   

4.
Generally the large tidal estuaries of the eastern United States, such as Delaware Bay, are characterized by rather high suspended particle concentrations at the landward end and high biological activity at the seaward end. As such, these estuaries can be conceptualized as geochemical and biochemical “reactors” for those processes controlling the transmission of trace elements from fresh to the coastal shelf waters. The efficiency of these reaction processes relative to estuarine flushing will control the residence times of microconstituents in such estuaries.Evidence is drawn from the Delaware estuary to illustrate biogeochemical estuarine reaction processes using salinity distribution data and mass balance calculations. The Delaware retains some of its estuarine trace elements as sedimented estuarine particles, while others are more conservative and largely exported. Those retained by sedimenting processes include trace elements in primarily geochemical (particle reactive) chemistries, while those exported appear recycled by biochemical (nutrient reactive) chemistries. Often, the behavior of trace elements (e.g., Fe, Cd) and nutrients (e.g., PO4) appear biogeochemically linked. Other examples are drawn from mixing studies to illustrate particle interaction, and benthic flux measurements to illustrate limited diagenetic reflux.The residence time of estuarine microconstituents should depend seasonally on the relative turbidity, flushing rate, and primary production of tidally dominated estuaries such as the Delaware. Thus, residence times of the more biogeochemically reactive microconstituents must be substantially shorter (days to weeks) than the average flushing times of these larger estuaries, while the residence times of the less reactive ones should approach such flushing times (weeks to months). True estuarine residence times of microconstituents can only be modeled after using large data sets averaged over time (season, tides) and space (salinity).  相似文献   

5.
Seasonal changes in freshwater inflow and other environmental conditions may induce changes in density and species composition of mangrove fishes along estuarine gradients. Fishes within mangrove habitats in a subtropical estuary were sampled monthly from May 1989 to May 1990, using block nets with rotenone and visual censuses. At 18 stations, temperature ranged from 22 to 34°C, depth from 10 to 104cm and underwater visibility from 1 to 13m. Salinity ranged from 0 to 60 upstream, and 35 to 54 mid- and downstream. A total of 573191 individuals (76 species) was observed or collected, with an average density of 6·5 fish m−2. Engraulidae, Atherinidae, Poeciliidae and Cyprinodontidae numerically dominated the assemblage. Distinct assemblages occurred up-, mid- and downstream and maintained coherent groups in these gradient positions over the seasons. Residents totalled 94·5% of the individuals, estuarine transients comprised 5·1% and occasional marine visitors were less than 0·4%. Densities of resident fishes peaked in winter as temperatures and water levels fell, uncorrelated with changes in salinity. These observations suggest that mangrove habitats may sustain diverse and abundant fish communities dominated by euryhaline residents. Although estuarine transients were consistently rare in upstream sub-basins, downstream were found numerous sub-adults of species occurring as adults on nearby reefs (Lutjanidae, Haemulidae). Thus, reef-associated estuarine transients may be abundant in mangrove habitats having near-marine salinities. Contrary to expectations, mangrove habitats in northeastern Florida bay did not function as a nursery as defined under the nursery-ground paradigm: young-of-the-year juveniles of estuarine transient species did not seek low salinity sub-basins. However, northeastern Florida Bay may not be representative of most mangrove estuaries as the area: (1) is without lunar tides and related circulation; (2) has low and variable amounts of submersed vegetation; and (3) experiences severe hypersaline conditions.  相似文献   

6.
The use of dissolved organic matter fluorescence as a tracer of river-sea mixing was examined in two South Carolina estuaries. Fluorescence declined linearly with seawater dilution in laboratory mixing studies, and also behaved conservatively in an estuary where a single river emptied into a bay. Fluorescence-salinity relationships were also studied in another estuary where a piedmont river (high suspended sediment, low fluorescence) and a coastal plains river (low sediment, high fluorescence) mixed with ocean water. The factor of 2 or greater difference in fluorescence between the two rivers allowed their relative contribution to the estuarine water mass to be distinguished. Petroleum hydrocarbons, measured in estuarine water at 0·7-1·8 μg l−1 concentrations, contributed negligibly to water fluorescence.  相似文献   

7.
Dissolved and particulate concentrations of silver in Tokyo Bay estuarine waters and Japanese rivers were determined in this study. The dissolved silver concentrations in the surface water of Tokyo Bay range from 5.9 to 15.1 pmol kg−1, which is comparable to those in the surface water of the Japan Sea, but two or three times higher than those in the surface water of the open ocean. However, elevated concentrations of dissolved silver are not found in Tokyo Bay compared with those in other highly urbanized estuaries, such as San Francisco Bay (20∼243 pmol kg−1). In the Tokyo Bay estuary, silver typically exhibits non-conservative mixing behavior, which is a common feature in the other estuaries reported previously. Dissolved silver concentrations decrease with salinity from the rivers to the mouth of Tokyo Bay. Silver is efficiently scavenged by suspended particulates, as evidenced by the high conditional distribution coefficients for silver throughout the estuary (log Kd > 5.0 ± 0.6). The silver fluxes into Tokyo Bay via inflowing rivers and atmospheric deposition were estimated as 83 kg y−1 and 15 kg y−1, respectively. A simple budget calculation shows that the silver supplied from rivers and atmosphere must be rapidly scavenged within the Tokyo Bay estuary.  相似文献   

8.
Concentrations of cobalt (Co) in surface waters from the Sagami River to northern Sagami Bay and from the Yura River to southwestern Wakasa Bay in Japan were determined in order to investigate the factors governing the distribution of this metal during estuarine mixing. Dissolved (<0.2 μm) and particulate (>0.2 μm) Co showed non-conservative mixing behavior with low or mid-salinity maxima within those two estuarine regions, indicating benthic remobilization and/or sewage input apart from riverine input during the estuarine mixing. These results are supported by a suite of complementary measurements of other parameters, such as manganese, phosphate, and suspended particulate matter concentrations. In addition, the concentration ratio of dissolved Co to total Co (dissolved plus particulate) increased along the salinity gradient, implying the potential for desorption of this metal from suspended particulate matter on estuarine mixing.  相似文献   

9.
The role of biogeochemical barriers as areas of an estuary with dramatically changing gradients of water characteristics in trace metal (TM) migration in the river-sea system, and the influence of physical, chemical, biological factors and corresponding barrier zones on the transport of TM in estuaries is considered. The effects of surface water pH (the Yuriev River — the Okhotsk Sea estuarine system), salinity and biological productivity (the Razdolnaya River — the Japan Sea estuarine system) on the behavior of some metals are demonstrated as the examples of different types of estuarine biogeochemical barriers.  相似文献   

10.
Dissolved cadmium and copper concentrations have been determined in 76 surface water samples in coastal and ocean waters around Scotland by anodic stripping voltammetry (ASV). A trace metal/salinity ‘front’ is observed to the west, north and north-east of Scotland separating high salinity ocean water (>35 × 10−3) with low concentrations of dissolved Cd and Cu from lower salinity (<35 × 10−3) coastal water containing higher concentrations of Cd and Cu. Mean Cd concentrations in ocean and coastal waters are 7 ng dm−3 (0·06 n ) and 11 ng dm−3 (0·10 n ) respectively; for Cu the respective levels are 60 ng dm−3 (0·95 n ) and 170 ng dm−3 (2·68 n ). The observed distribution is attributed principally to freshwater runoff and the advection of contaminated Irish Sea water into the study area.  相似文献   

11.
Copper concentrations were measured in the sediments and dissolved phase of the water column in the Lérez Estuary (Pontevedra Ria, Galicia), NW Spain, and in the freshwater-sewage inputs to the estuary. Dissolved copper fluxes in the estuary were quantified. Results show that the freshwater end-member in the Lérez Estuary has minimal copper contamination ([Cu](Dissolved)=7+/-4 nM, Sediment Enrichment Factor=1) and the source of dissolved copper inputs is localized in the saline end-member ([Cu](Dissolved)=20-55 nM, Sediment Enrichment Factor=6-7). A non-conservative behaviour of dissolved copper showing a net addition during estuarine mixing was observed. The budgetary calculations and the copper sediment distribution suggest that the major copper input to the estuary-ria system is located at the Marín-Placeres transect, playing an important role in the net addition of copper within the estuarine mixing. The importance of upwelling in the renewal of the Galician coastal waters and dilution of continental inputs is discussed.  相似文献   

12.
A sensitive method for iron determination in seawater has been adapted on a submersible chemical analyser for in situ measurements. The technique is based on flow injection analysis (FIA) coupled with spectrophotometric detection. When direct injection of seawater was used, the detection limit was 1.6 nM, and the precision 7%, for a triplicate injection of a 4 nM standard. At low iron concentrations, on line preconcentration using a column filled with 8-hydroxyquinoline (8HQ) resin was used. The detection limit was 0.15 nM (time of preconcentration = 240 s), and the precision 6%, for a triplicate determination of a 1 nM standard, allowing the determination of Fe in most of the oceanic regimes, except the most depleted surface waters. The effect of temperature, pressure, salinity, copper, manganese, and iron speciation on the response of the analyser was investigated. The slope of the calibration curves followed a linear relation as a function of pressure (Cp = 2.8 × 10− 5P + 3.4 × 10− 2 s nmol− 1, R2 = 0.997, for Θ = 13 °C) and an exponential relation as a function of temperature (CΘ = 0.009e0.103Θ, R2 = 0.832, for P = 3 bar). No statistical difference at 95% confidence level was observed for samples of different salinities (S = 0, 20, 35). Only very high concentration of copper (1000 × [Fe]) produced a detectable interference. The chemical analyser was deployed in the coastal environment of the Bay of Brest to investigate the effect of iron speciation on the response of the analyser. Direct injection was used and seawater samples were acidified on line for 80 s. Dissolved iron (DFe, filtered seawater (0.4 μm), acidified and stored at pH 1.8) corresponded to 29 ± 4% of Fea (unfiltered seawater, acidified in line at pH 1.8 for 80 s). Most of Fea (71 ± 4%) was probably a fraction of total dissolvable iron (TDFe, unfiltered seawater, acidified and stored at pH 1.8).  相似文献   

13.
The frontal cascade ultrafiltration (UF) technique in conjunction with stripping chronopotentiometry (SCP) has been evaluated for determining the colloidal distribution of Cu, Pb and Cd in estuarine waters. Metallic concentrations in seven size fractions (0.45 μm–0.22 μm; 0.22 μm–300 kDa; 300–50 kDa; 50–30 kDa; 30–10 kDa; 10–5 kDa; <5 kDa) were determined with the aim to investigate their changes along the salinity gradient of the Penzé system (NW France). These data, completed by analysis of the total dissolved metals at 10 stations over the whole freshwater–seawater mixing zone, provided some insights in the removal and addition processes that affect Cu, Pb and Cd in estuaries.  相似文献   

14.
Few data on dissolved trace metals in rivers and estuaries are presently available. This paper is an attempt to provide additional data on dissolved concentrations obtained in polluted and so-called unpolluted river estuarine systems. Data for two major French rivers (Gironde, Rhône) have been compared with the Chinese Yellow River (Huanghe) and Yangtze River (Changjiang). Dissolved Cd concentrations have been measured by differential pulse anodic stripping voltammetry. Average concentrations range from 15 ng kg−1 to 50 ng kg−1 (0.13–0.45 nmol kg−1) in the French rivers and are below 4 ng kg−1 (0.040 nmol kg−1) in the Chinese rivers.In all the estuaries studied the dissolved Cd concentrations depict a systematic bulge in the mixing zone which is attributed largely to remobilization processes from particulate matter when the chlorinity increases. Other parameters that may also play a significant role for remobilization are discussed. The processes concerned lead us to reassess the net Cd river input to the oceans, and this should be taken into account for a more precise evaluation of the residence time of oceanic Cd.  相似文献   

15.
Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003–2007 to characterise the behaviour of three dissolved metals (uranium, vanadium and molybdenum) in surface and bottom water along the salinity gradient of the highly turbid macrotidal Gironde Estuary using a solid–liquid extraction. Uranium behaved conservatively whatever the water discharges observed. The slight dissolved U depletion compared to the theoretical dilution line between the fluvial and marine end-members occasionally observed in the low salinity range (0–3) was attributed to the mixing of different water bodies of the Gironde tributaries. In contrast, dissolved V behaviour was largely influenced by the hydrological conditions, showing increasingly pronounced addition with decreasing freshwater discharges, (i.e. increasing residence times of water and particles in the estuary). This addition of dissolved V in the low- to mid-salinity range was attributed to desorption processes observed in the Maximum Turbidity Zone (MTZ). The distribution of dissolved Mo concentrations along the salinity gradient was highly variable. Apparent conservative, and non-conservative behaviours were observed and were related to the concomitance of desorption from SPM, inputs from sediments for additive distribution and biological uptake and removal into sediments for subtractive distribution. Based on the whole database (2003–2007), annual net fluxes to the coastal ocean were estimated for dissolved U (15.5–16.6 t yr−1) and V (31.3–36.7 t yr−1).  相似文献   

16.
Dissolved trace element (copper, nickel, cadmium, zinc, cobalt, and iron) concentrations were measured in surface water samples collected from 27 stations in the San Francisco Bay and Sacramento—San Joaquin Delta during April, August and December of 1989. The trace element distributions were relatively similar for all three sampling periods, and evidenced two distinct biogeochemical regimes within the estuarine system. The two regimes were comprised of relatively typical trace element gradients in the northern reach and anthropogenically perturbed gradients in the southern reach of the estuary. These dichotomous trace element distributions were consistent with previous reports on the distributions of nutrients and some other constituents within the estuary.In the northern reach, trace element and dissolved phosphate concentrations were non-conservative. Simple estuarine mixing models indicated substantial internal sources of dissolved copper (46–150%), nickel (250–500%) and cadmium (630–780%) relative to riverine inputs in April and August, and sizable internal sinks for dissolved cobalt (> 99%) and iron (> 70%) during the same periods. Dissolved zinc fluxes varied temporally, with a relatively large (135%) internal source in April and a relatively small (29%) internal sink in August.Concentrations of many trace elements (copper, nickel, cadmium, zinc, and cobalt) in the southern reach were anomalously high relative to concentrations at comparable salinities in the northern reach. Mass balance calculations indicated that those excesses were primarily due to anthropogenic inputs (waste-water discharges and urban runoff) and diagenetic remobilization from benthic sediments. The magnitude of these excesses was amplified by the long hydraulic residence time of dissolved constituents within the South Bay.The influence of other factors was evident throughout the system. Notably, upwelling appeared to elevate substantially dissolved cadmium concentrations at the mouth of the estuary and authigenic flocculation appeared to dominate the cycling of dissolved iron in both the northern and southern reaches of the system. Biological scavenging, geochemical scavenging and diagenic remobilization were also found to be important in different parts of the estuary. Additional complementary information is required to quantify accurately these processes.  相似文献   

17.
In order to identify the major sources of trace metals (TM) in the Portuguese coastal waters, 58 surface water samples were collected during September 1988. The area sampled extended from the Tagus Estuary (down to a salinity of 25) to cape Ste Marie on the southern coast of Portugal. Dissolved metal concentrations in the fully marine waters ranged from 30 to 250 pM for Cd, 0.7–15 nM for Cu, 0.9–20 nM for Zn and 1.8–4.5 nM for Ni. Within the Tagus Estuary (salinity 25), concentrations increased to 3400 pM for Cd, 26 nM for Cu, 14 nM for Ni and 230 nM for Zn.The large-scale distribution of these metals is dominated by two strong continental sources, both probably linked to the exploitation of pyrite ores. In the Tagus Estuary, TM enrichments can be mostly attributed to a pyrite roasting plant located on the shore in front of Lisbon. Concerning the south Portuguese shelf waters, several hypotheses are proposed to explain their elevated metal concentrations. We particularly discussed the likely influence of the Tinto/Odiel rivers located 100 km eastward, an influence well known in the shelf waters of the Gulf of Cadiz. These rivers are extremely metal-rich because of acid mine tailings originating from their catchment. Between these two regions, upwelling of relatively metal-poor water largely contributes to the dilution of the continental inputs. Indeed, water exchanges on the shelf linked to the upwelling involve water fluxes 500 times higher than the Tagus River flow, and renew the coastal waters that are thus cleaned from terrestrial contamination. Contrary to many other upwelling systems in non-contaminated areas, the Portuguese upwelling does not act as a source of trace-metal enrichment of the continental margin waters.  相似文献   

18.
The optical characteristics of a black water river estuary from the north coast of Scotland were examined in the filtered (0.4 µm), ultrafiltered (5 kDa) and colloid-enriched fractions of estuarine samples. The samples were collected over the full salinity range during a period when the pH was relatively constant (8.2–8.5) throughout the estuary, allowing the influence of salinity on estuarine colloidal processes to be distinguished. The properties examined in the bulk, the low molecular weight (LMW) and the colloidal fraction (HMW) were UV–visible absorption, 3-D fluorescence excitation–emission matrix (EEM) spectrum, inorganic and organic carbon, mean size (by dynamic light scattering), and size distribution by flow field-flow fractionation analysis (FlFFF). The combined results of these analyses support the view that river-borne, humic-rich colloids underwent two types of transformation upon mixing with the seawater end member. The first one resulted in an apparent increase in the abundance of LMW constituents and may be explained by coiling of the individual humic macromolecules. The second one resulted in an increase in the mean size measured in both the lower and higher colloidal size ranges, and may be explained by aggregation of colloids to form entities that were still mostly colloidal i.e., smaller than 0.4 µm. The LMW contribution to the bulk optical properties increased with increasing salinity. Very similar findings were obtained from simulated mixing experiments using a Nordic Reference NOM extract as a source of freshwater colloids. This indicates that changes in the molecular architecture and molar mass of river-borne colloids—not changes in their chemical nature—were responsible for the observed variations in the spectral characteristics of CDOM in this estuary.  相似文献   

19.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   

20.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号