首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We investigate the runaway instability of configurations consisting of a massive dense but non-self-gravitating thick disc/torus surrounding a massive black hole (MBH). We limit our model parameters to values that result in a self-consistent thick disc around an MBH. We identify, analytically, the index of the angular momentum distribution that will form a thick disc as an initial equilibrium state, and obtain the mass ratio of the disc to the central black hole for which the disc is dominated by the radiation pressure. In our theoretical framework we find that a self-consistent thick disc with constant angular momentum leads to a runaway instability on a dynamical time-scale. However, even a slight increase of the specific angular momentum outwards has a strong stabilizing effect on the accretion process. Finally, we discuss our results and present possible applications to high-energy emission.  相似文献   

2.
We present analytic models for the local structure of self-regulated self-gravitating accretion discs that are subject to realistic cooling. Such an approach can be used to predict the secular evolution of self-gravitating discs (which can usefully be compared with future radiation hydrodynamical simulations) and to define various physical regimes as a function of radius and equivalent steady state accretion rate. We show that fragmentation is inevitable, given realistic rates of infall into the disc, once the disc extends to radii >70 au (in the case of a solar mass central object). Owing to the outward redistribution of disc material by gravitational torques, we also predict fragmentation at >70 au even in the case of low angular momentum cores which initially collapse to a much smaller radius. We point out that 70 au is close to the median binary separation and propose that such delayed fragmentation, at the point that the disc expands to >70 au, ensures the creation of low mass ratio companions that can avoid substantial further growth and consequent evolution towards unit mass ratio. We thus propose this as a promising mechanism for producing low mass ratio binaries, which, while abundant observationally, are severely underproduced in hydrodynamical models.  相似文献   

3.
We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The three-dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou . In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outwardly and allows mass to accrete inwardly. The instability takes the form of a m =1 rotating 'crescent', reminiscent of the purely hydrodynamic non-linear instability previously found in pressure-supported discs. A model where the initial surface mass density Σ( r ) and B z ( r ) decrease with radius as power laws shows transient mass accretion during about six orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.  相似文献   

4.
The phenomenon of negative viscosity-alpha in convectively unstable Keplerian accretion discs is discussed. The convection is considered as a random flow with an axisymmetric mesoscale pattern. Its correlation tensor is computed with a time-averaging procedure using Kley's 2D hydrocode. There is a distinct anisotropy between the turbulence intensities in the radial and azimuthal directions, i.e. the radial velocity rms dominates the azimuthal one. As a consequence, an extra term in the expression for the turbulent transport of angular momentum appears which does not vanish for rigid rotation ('Λ-effect'). It is negative ('inwards transport') and even seems to dominate the positive contribution of the eddy viscosity representing outwards transport of angular momentum. For a turbulence model close to that of the mixing-length theory, the rotational influence on the anisotropy of the turbulence intensities,     , and the covariance  〈 u ' R u ' φ 〉  – representing the angular momentum transport – is computed and compared with the accretion disc simulations. Indeed, the negative angular momentum transport can be explained with the observed dominance of the radial turbulence intensity. If, on the other hand, in turbulence fields the azimuthal intensity would dominate or the turbulence is even isotropic, then we always find a positive transport of the angular momentum.  相似文献   

5.
The problem of the effect of a strongly magnetic star on a surrounding accretion disc is considered. For stellar rotation periods greater than a critical value, a numerical solution is found for a steady disc with turbulent magnetic diffusion, including electron scattering opacity and radiation pressure. Inside the corotation radius, the extraction of disc angular momentum by magnetic coupling to the star becomes strong and this leads to enhanced viscous stress and dissipation. The resulting elevated temperature causes electron scattering opacity and radiation pressure to become significant further from the star than in the absence of its magnetic field. The disc ends as its height increases rapidly due to the large central pressure, its density decreases and magnetically induced viscous instability occurs.  相似文献   

6.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

7.
A semi-analytic method is presented for solving for the radial and vertical structures of an accretion disc, with a magnetically channelled wind flowing from its surfaces. Both magnetic and turbulent viscous effects are taken into account, and the essential wind properties are related to the disc structure. The angular momentum removed by the wind plays a major part in driving the inflow through the disc, with photospheric temperatures being sufficient to generate the required wind mass flux. The magnetic field is generated by an αω-dynamo, but the method of solution should have application with other magnetic field sources. Self-consistent disc-wind solutions result, with rms turbulent Mach numbers which are in good agreement with those found in simulations of turbulence generated from magnetic shearing instabilities.  相似文献   

8.
本文绘出了计算吸积盘边缘物质和角动量损失,以及它们对激变双星演化影响的理论模型.计算结果表明,紫外天文卫星(IUE)观测到的高速物质流是来源于吸积盘边缘,吸积盘边缘的角动量损失可以成为周期大于3小时的激变双星演化的物理机制.  相似文献   

9.
In this paper we study the 3D SPH structure and dynamics of an accretion disc generated in a close binary system by supersonic wind accretion from a massive secondary on to a compact primary. The stellar masses and separation between the two components are characteristic of the Cen X-3 system: the secondary is a 19.1-M⊙ star not filling completely its Roche lobe, while the primary is a white dwarf or a neutron star of 1.4 M⊙.
An interesting result of our simulation is that, in a quasi-stationary state attained after ≃4 orbital periods, only about three-quarters of the particles released by the secondary penetrate the primary Roche lobe. The disc is remarkably elongated and thick, and consistent deviations from the 'standard model' of specific angular momentum and radial temperature distributions have been found. However, the most interesting result is that the azimuthal distribution of the radial Mach number shows oblique structures (spiral shocks), which persist from the outer edge to the inner regions, in contrast to the case of discs formed by the usual L1 accretion and even by wind accretion in much less massive systems.  相似文献   

10.
11.
On the basis of 'sticky particle' calculations, it is argued that the gas features observed within 10 pc of the Galactic Centre — the circumnuclear disc (CND) and the ionized gas filaments — as well as the newly formed stars in the inner 1 pc can be understood in terms of tidal capture and disruption of gas clouds on low angular momentum orbits in a potential containing a point mass. The calculations demonstrate that a dissipative component forms a 'dispersion ring', an asymmetric elliptical torus precessing counter to the direction of rotation, and that this shape can be maintained for many orbital periods. For a range of plausible initial conditions, such a structure can explain the morphology and kinematics of the CND and of the most conspicuous ionized filament. While forming the dispersion ring, a small cloud with low specific angular momentum is drawn into a long filament which repeatedly collides with itself at high velocity. The compression in strong shocks is likely to lead to star formation even in the near tidal field of the point mass. This process may have general relevance to accretion on to massive black holes in normal and active galactic nuclei.  相似文献   

12.
The radial structure of a thin accretion disc is calculated in the presence of a central dipole magnetic field aligned with the rotation axis. The problem is treated using a modified expression for the turbulent magnetic diffusion, which allows the angular momentum equation to be integrated analytically. The governing algebraic equations are solved iteratively between 1 and 104 stellar radii. An analytic approximation is provided that is valid near the disruption radius at about 100 stellar radii. At that point, which is approximately 60 per cent of the Alfvén radius and typically about 30 per cent of the corotation radius, the disc becomes viscously unstable. This instability results from the fact that both radiation pressure and opacity caused by electron scattering become important. This in turn is a consequence of the magnetic field which leads to an enhanced temperature in the inner parts. This is because the magnetic field gives rise to a strongly enhanced vertically integrated viscosity, so that the viscous torque can balance the magnetic torque.  相似文献   

13.
In this paper we consider the equilibrium of a magnetofluid disc in Schwarzschild background with an external magnetic field, having the azimuthal and the radial components of the flow velocity nonzero. The electrical conductivityσ of the fluid is taken to be finite and thus the solution for the electromagnetic field is required to satisfy the Ohm’s law too with the four-current having onlyJ ϕ andJ t nonzero. The various physical parameters that have to correlate for possible equilibrium configurations are identified and their respective magnitudes estimated. It is found that for a given angular momentum distribution the inner edge of the disc can reach well within the usual6m limit only when the surface magnetic field of the central object is not too high when the matter density at the outer edge of the disc and the accretion rate are taken with reasonable limits  相似文献   

14.
We consider the effects of accretion stream overflow on the viscous dynamics of accretion discs in dwarf novae. If the stream from the secondary star is geometrically thick enough, some fraction of its material can flow over and under the disc. The mass and specific angular momentum of the stream are then deposited not only at the point of collision with the outer disc, but also at those radii in the inner disc with geometric heights that are large enough to intercept the residual stream, or near the radius where the disc has the same specific angular momentum as the stream. The overflowing stream can alter the behaviour of heating fronts and cooling fronts in the disc. If the mass fraction of the overflowing stream is of order tens of per cent, the deposition of mass in the inner parts of the disc is sufficient to change the character of the eruption light curves significantly.  相似文献   

15.
本文详细讨论了在Blandford-Znajek过程中吸积盘中心黑洞的角动量和质量的总变化率与质量吸积率和能量提取率之比的关系,在此基础上讨论了BlandfordZnajek过程对黑洞吸积盘内边缘半径r_(ms)演化的影响,并证明在此过程中中心黑洞的熵总是增大的。  相似文献   

16.
We propose a model of magnetic connection (MC) of a black hole with its surrounding accretion disc based on large-scale magnetic field. The MC gives rise to transport of energy and angular momentum between the black hole and the disc, and the closed field lines pipe the hot matter evaporated from the disc, and shape it in the corona above the disc to form a magnetically induced disc–corona system, in which the corona has the same configuration as the large-scale magnetic field. We numerically solve the dynamic equations in the context of the Kerr metric, in which the large-scale magnetic field is determined by dynamo process and equipartition between magnetic pressure and gas pressure. Thus we can obtain a global solution rather than assuming the distribution of large-scale magnetic field beforehand. The main MC effects lie in three aspects. (1) The rotational energy of a fast-spinning black hole can be extracted, enhancing the dissipation in the accretion disc, (2) the closed field lines provide a natural channel for corona matter escaping from disc and finally falling into black hole and (3) the scope of the corona can be bounded by the conservation of magnetic flux. We simulate the high-energy spectra of this system by using Monte Carlo method, and find that the relative hardness of the spectra decreases as accretion rate or black hole spin a * increases. We fit the typical X-ray spectra of three black hole binaries  (GRO J1655−40, XTE 1118+480 and GX 339−4)  in the low/hard or very high state.  相似文献   

17.
In a novel approach to studying viscous accretion flows, viscosity has been introduced as a perturbative effect, involving a first-order correction in the α-viscosity parameter. This method reduces the problem of solving a second-order non-linear differential equation (Navier–Stokes equation) to that of an effective first-order equation. Viscosity breaks down the invariance of the equilibrium conditions for stationary inflow and outflow solutions, and distinguishes accretion from wind. Under a dynamical systems classification, the only feasible critical points of this 'quasi-viscous' flow are saddle points and spirals. On large spatial scales of the disc, where a linearized and radially propagating time-dependent perturbation is known to cause a secular instability, the velocity evolution equation of the quasi-viscous flow has been transformed to bear a formal closeness with Schrödinger's equation with a repulsive potential. Compatible with the transport of angular momentum to the outer regions of the disc, a viscosity-limited length-scale has been defined for the full spatial extent over which the accretion process would be viable.  相似文献   

18.
The non-linear fluid dynamics of a warped accretion disc was investigated in an earlier paper by developing a theory of fully non-linear bending waves in a thin, viscous disc. That analysis is extended here to take proper account of thermal and radiative effects by solving an energy equation that includes viscous dissipation and radiative transport. The problem is reduced to simple one-dimensional evolutionary equations for mass and angular momentum, expressed in physical units and suitable for direct application. This result constitutes a logical generalization of the alpha theory of Shakura & Sunyaev to the case of a time-dependent warped accretion disc. The local thermal–viscous stability of such a disc is also investigated.  相似文献   

19.
We present the results of an analysis of ultraviolet observations of T Tauri stars (TTs). By analysing emission measures taken from the literature, we derive rates of ionizing photons from the chromospheres of five classical TTs in the range  ∼1041–1044  photon s−1, although these values are subject to large uncertainties. We propose that the He  ii /C  iv line ratio can be used as a reddening-independent indicator of the hardness of the ultraviolet spectrum emitted by TTs. By studying this line ratio in a much larger sample of objects, we find evidence for an ionizing flux which does not decrease, and may even increase, as TTs evolve. This implies that a significant fraction of the ionizing flux from TTs is not powered by the accretion of disc material on to the central object, and we discuss the significance of this result and its implications for models of disc evolution. The presence of a significant ionizing flux in the later stages of circumstellar disc evolution provides an important new constraint on disc photoevaporation models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号