首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Based on the analyses of 43 elements in 16 samples of the raw coal and feed coal collected from the northern Ordos basin and Shanxi Province, the modes of occurrence of these elements were studied using the method of cluster analysis and factor analysis, and the cleaning potential of the hazardous elements relatively enriched in the coals was discussed by analyzing six samples of the cleaned coal from the coal-washing plants and coal cleaning simulation experiments. The results shows that the elements Br and Ba show a strong affinity to the organic matter, Cs, Cd, Pb, Zn and Hg partly to the organic matter, and the other trace elements are mainly associated with the mineral matter. Cs, Mo, P, Pb, Zn and S have positive correlations with the two principal factors, reflecting the complexity of their modes of occurrence. Some elements that were thought to show a faint relationship (Be with S and Sb with carbonates) in other rocks are found to have a strong interrelation in the coals. Clay minerals (mainly k  相似文献   

2.
Experiment of Coal Leaching and Study of the Separation of Trace Elements   总被引:9,自引:0,他引:9  
Leaching is an important way of separation of trace elements from coal. Based on leaching experiments, the content of trace elements separated out from coal is related to their existing state and content in coal, the duration of leaching process, temperature of leaching liquor and its acidity and basicity. The higher the temperature of leaching liquor and the longer the leaching time, the higher the contents of separated trace elements will be. In the course of leaching, the pH values of leaching liquors change and different trace elements are affected differently by the pH values.  相似文献   

3.
Reorted in the present paper are some preliminary results of the studies on the petrochemistry and mineral compositions of various skarn zones in the Dapingdi iron deposit,the chemical compositions of iron ore and magnetite,and trace elements,sulfur isotopic compositions and F contents of skarns and iron ore.On the hasis of these data the authors have discussed the possibie relations between skarnization and the formation of iron ore.Moreover,the principal factors controlling skarnization and related mineralization are also discussed.It is suggested that skarnization and related mineralization are mainly controlled by the chemical composition,temperature,and pH and Eh of ore solutions.Pressure can only play a little role although it should be taken into consideration.  相似文献   

4.
Adsorption experiments were made at room temperature and neutral pH value on different types of min-erals associated with the Lower Cambrian black shale series polymetallic layers in Hunan and Guizhou provinces on nanometer-sized Pt colloids and PtCl42--bearing ionic solutions with an attempt to constrain the relationship between the different types of minerals in the polymetallic layers and the enrichment of platinum group elements (PGEs). Experimental results showed that the different types of minerals show strong selectivity to the adsorption of nano-meter-sized Pt colloids and PtCl42--bearing ionic solutions. Metallic sulfides, organic matter and clay minerals are the strong adsorbents of PGEs, while quartz, albite, muscovite and other silicate minerals show a week adsorbility to both of them. This phenomenon is well consistent with the geological fact that metallic sulfides, organic matter and clay minerals in the polymetallic layers of the black shale series are the major carrier minerals of PGEs, giving a thorough explanation to the mechanism of enrichment of previous metal elements. Adsorption may be a principal mechanism of enrichment of precious metal elements under lower temperature conditions. The presence of the aforementioned strong adsorbents is the good geochemical barriers for the enrichment of PGEs.  相似文献   

5.
Concentrations of seventeen hazardous trace elements including As, Pb, Hg, Se, Cd, Cr, Co, Mo, Mn, Ni, U, V, Th, Be, Sb, Br and Zn in the No.ll coal seam, Antaibao surface mine, Shanxi Province were determined using Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Cold-Vapor Atomic Absorption Spectrometry (CV-AAS) and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Comparisons with average concentrations of trace elements in Chinese coal show that the concentrations of Hg and Cd in the No. 11 coal seam, Antaibao surface mine are much higher. They may be harmful to the environment in the process of utilization. The variations of the trace elements contents and pyritic suffur in vertical section indicated that: (a) the concentrations of As, Pb, Mn, and pyritic sulfur decrease from roof to floor; (b) the concentrations of Cr, Zn and Mo are higher in roof, floor and lower in coal seam; (c) the concentration of Br, Sb, and Hg are higher in coal seam and lower in roof and floor; (d) the concentrations of Mo, V, Th and AI vary consistently with the ash yield. Cluster analysis of trace elements, pyritic sulfur, ash yield and major elements, such as AI, Fe, P, Ca shows that: (a) pyritic sulfur, Fe, As, Mn, Ni, Be are closely associated and reflect the influence of pyrite; (b) Mo, Se, Pb, Cr, Th, Co, Ca and A! are related to clay mineral, which is the main source of ash; (c) U, Zn, V, Na, P maybe controlled by phosphate or halite; (d) Hg, Br, Sb and Cd may be mainly organic-associated elements which fall outside the three main groups. The concentration distribution characteristics of trace elements in coal seam and the cluster analysis of major and trace elements showed that the contents of trace elements in the No. 11 coal seam, Antaibao surface mine, are mainly controlled by detrital input and migration from roof and floor.  相似文献   

6.
Coals from Guizhou Province, Southwest China, attract many researchers' attention for their high concentrations of hazardous trace elements, sulphur and mineral components. Trace elements in coals have diverse modes of occurrence that will greatly influence their migration in the process of coal preparation. Mode of occurrence is also important in determining the partitioning during coal combustion. The coal floatation test by progressive release was used to study the migration of trace elements and mineral components in the process of froth floatation. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the absolute concentrations of trace elements including As, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn in the parent coals and the floatation fractions. Precise determination of the mineral matter percentage in coals was obtained by low-temperature ashing. The mineral compositions in coals were quantified using Rietveld-based X-ray diffraction analysis package on low-temperature ash. Scanning electron microscope equipped with energy dispersive X-ray detector was used to provide information on the forms of occurrence of mineral components in coal. Five floatation fractions were obtained from the pulverized coal samples. The contents of trace elements and mineral components decrease from the first tailings to the last cleaned coal. The concentrations of trace elements and mineral components in parent coals and different floatation samples show that trace elements and mineral components are mainly concentrated in the first tailings samples. Nearly 60% of mineral components are enriched in the first tailings, whereas less than 1.3% remains in the cleaned coal. The ratio of sixteen trace elements concentrations in the first tailings to the corresponding concentrations in the cleaned coal ranges from 1.6 to 22.7. Quantitative mineralogical analysis results using the full-profile general structure analysis system (GSAS) showed that the main compositions of LTA include quartz, calcite, kaolinite, pyrite, chlorite, montmorillonite, illite, anatase and pyrite.  相似文献   

7.
Major, trace and organic elements of a South China were reported to investigate elements laterite profile developed on Neogene basalt on Hainan Island, mobilization and redistribution in tropical regions. The results indicate that strong acid environment and organic matter (OM) can remarkably improve the transfer of insoluble elements. Among all the elements, Th is the least mobile. As for the general conservative elements during incipient chemical weathering, such as Ti, Zr, Hf and Nb, the removals are up to 30%-40% in the upper profile. And for Fe, A1, Cu and Ni, that tend to be combined with secondary minerals and to be retained in temperate zone, they are re- moved from the upper profile, transferred downwards, and then precipitated in the lower profile. In addition, atmos- pheric inputs, including sea salt aerosols and dust, have a profound effect on the budgets of elements that are susceptible to leaching losses (e.g. K, Na and Sr). Excluding the possibilities of groundwater and erosion, the remarkable increase of K, Na and Sr concentrations in the upper profile, together with dramatically upward increasing trends of the percentage changes of Sr/Th, K/Th and Na/Th ratios, show that atmospheric inputs, especially sea salt aerosols, contribute much extraneous seawater derived elements, such as K, Na and Sr to the soils. The overall elemental be- haviors in this profile suggest that organic matter and atmospheric inputs play a very important role in the mobiliza- tion and redistribution of elements during extreme weathering in tropical regions.  相似文献   

8.
The Yangtze Valley was one of the most important metallogenic regions during the Jurassic-Cretaceous period in East China, where more than 200 polymetallic Cu-Fe-Au, Mo, Zn, Pb, Ag deposits have been found. Trace elements were chemically analyzed and the relevant data were collected from literature for the Yanshanian (Mesozoic) igneous rocks which have close relationship with Cu-Au mineralization. Copper mineralization in the lower Yangtze Valley can be divided into three major types: skarn type, porphyry type and volcanic type. The porphyry type is of rare occurrence, such as the Shaxi porphyry copper deposit in the northern part of the lower Yangtze metallogenic valley. This paper focuses on the REE and trace element geochemistry of several Cu-Au deposits along the lower part of Yangtze metallogenic valley in Anhui. The results showed that there are differences in REE distribution for these four types of Cu-Au mineralization, which confine the sources of REE and trace elements as well as other mantle and transitional compatible elements. The results of both REE and trace element geochemical studies showed that these elements with different characteristics have different origins, probably representing different sources of Cu-Au deposits in the deep crust and upper mantle environments. The 40Ar/39Ar dating of one biotite sample gave an age of 131 Ma with a high level of confidence, which represents the age of formation of the Shaxi porphyrite intrusive with porphrytic Cu-Au mineralization, which is consistent with that of the majority of the adjacent acid intrusives with mass Cu-Au mineralization along the Yangtze metallogenic belt in the Yanshanian period (Mesozoic). This is the first attempt to use the high precision method to date the Shaxi porphyrite intrusive.  相似文献   

9.
This paper presents the results of eco-geochemical research on black rock series enriched in metallic elements in Pingli County,Shaanxi Province,which lies at the northern margin of the Yangtze Platform.There is a suite of bone coal-bearing black carbonaceous rocks in the Cambrian Donghe Formation throughout the region.Soils in Pingli contain high metallic elements derived from the bone coal and carbonaceous rocks.Edible plants growing in the soils contain high Se,Cu and Mo.Two case studies are documented.One is a black shale area with bone coal and Se enrichment,and the other is a black shale area with bone coal mine and copper mineralization.Eco-geochemical effects of metallic element-rich black shales on plants are reported in this paper.  相似文献   

10.
Demonstrating the biogenicity of presumptive microfossils in the geological record often requires supporting chemical signatures, including isotopic signatures. Understanding the mechanisms that promote the preservation of microbial biosignatures associated with microfossils is fundamental to unravelling the palaeomicrobiological history of the material. Organomineralization of microorganisms is likely to represent the first stages of microbial fossilisation and has been hypothesised to prevent the autolytic degradation of microbial cell envelope structures. In the present study, two distinct fossilisation textures(permineralised microfossils and iron oxide encrusted cell envelopes)identified throughout iron-rich rock samples were analysed using nanoscale secondary ion mass spectrometry(NanoSIMS). In this system, aluminium is enriched around the permineralised microfossils, while iron is enriched within the intracellularly, within distinct cell envelopes. Remarkably,while cell wall structures are indicated, carbon and nitrogen biosignatures are not preserved with permineralised microfossils. Therefore, the enrichment of aluminium, delineating these microfossils appears to have been critical to their structural preservation in this iron-rich environment. In contrast,NanoSIMS analysis of mineral encrusted cell envelopes reveals that preserved carbon and nitrogen biosignatures are associated with the cell envelope structures of these microfossils. Interestingly, iron is depleted in regions where carbon and nitrogen are preserved. In contrast aluminium appears to be slightly enriched in regions associated with remnant cell envelope structures. The correlation of aluminium with carbon and nitrogen biosignatures suggests the complexation of aluminium with preserved cell envelope structures before or immediately after cell death may have inactivated autolytic activity preventing the rapid breakdown of these organic, macromolecular structures.Combined, these results highlight that aluminium may play an important role in the preservation of microorganisms within the rock record.  相似文献   

11.
In the Triassic marine sediments, an obvious enrichment of lithium has been found. The source and enrichment mechanism of lithium is unknown. Here, we report trace and rare earth element and isotope analyses for Triassic sedimentary samples from core ZK601, recovered from the Huangjinkou anticline in the Xuanhan basin. Lithium concentrations from the Leikoupo and Jialingjiang formations are much higher than the average concentrations in the crust of eastern China and in other marine sediments. Lithium concentrations are highest at depths of 3300–3360 m (in argillaceous marine sediments), and Li is positively correlated with Rb, Ga, Zr, Nb and other trace elements. The range of δ7Li values in our samples is consistent with that in other Triassic marine carbonate rocks. Lithium concentrations and isotope ratios are negatively correlated in the argillaceous dolomite samples at depths of 3300–3360 m. We compared the results in this study with trace and rare earth elements in the clay from Sichuan and Chongqing, and propose that the clay in the argillaceous marine evaporites from Huangjinkou formed via the hydrolysis of volcanic ash during Early–Middle Triassic volcanic eruptions into brine basins, during which clay adsorbed Li from the brine and formed Li-rich argillaceous dolomites. The addition and hydrolysis of volcanic ash in the evaporative brine is also related to the formation of a new type of polyhalite.  相似文献   

12.
For the iron deposits occurring in andesitic volcaic rocks of the Lower Yangtze Area.the genetic model for porphyrite iron deposits was proposed by chinese geologists more than ten years ago on the basis of their detailed studies in the Nanjing-Wuhu Basin.It comprises a set of deposits of different genetic types ranging from late magmatic segregation ,ore-magma injection,pneumato-hydatogenetic replacing and hydrothermal filling as well as sedimentary origin.The deposits are closely connected with the gabbro-diorite porphyrite subvolcanic intrusive bodies both in space and in genesis.Miner4alization and wall-rock alteration are consistent with the history of the magmatic evolution.Geochemical studies on trace elements and S,O,Sr isotopes have proved that the porphyrite iron deposits are of magmatic origin,The proposed model may be applied to iron ores associated with andesitic volcanites,for example,in Chile,Mexico,Pakistan,Turkey,etc.  相似文献   

13.
Concentrations of some heavy metals and trace elements such as Cr,Ga,Ni,Zn,Mo,Cu, Pb,Yb,Y,Nb,Ti,Sr,Ba,Mn,Sc,Co,V,Zr,Fe,Al,W,Se,Bi,Sb,As,Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated.The distribution of the elements in the shells is categorized into four groups.Of these,concentrations of 12 elements(As,Bi,Cd,Co,Ga,Mo,Nb, Sb,Se,Sc,W and Yb)are below zero [(0.053-0.79)×10~(-6)];concentrations of seven elements(Cr,Ni, Pb,V,Y,Zr and Cu)are(1.0-6.0)×10~(-6);concentrations of four elements(Ti,Mn,Ba and Zn)are 10- 20×10~(-6);and concentrations of five elements(Si,Al,Fe,Mg and Sr)are(47.44-268.11)×10~(-6).The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina(Linné),Pitar-rudis(Poll),Nassarius reticulatus(Linné),Venerupis senescens (Coocconi),Mytilus galloprovincialis(Lamarck),Mytilaster lineatus(Gemelin in Linné)and Chlamys glabra.It was found that,in mollusk taxonomy,the elements have unique values.In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks.In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment.Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

14.
Desert terrains in northern China are covered by widespread regolith sediments which mask geochemical signals from ore bodies and are major obstacles to mineral exploration. There is a critical need to study the vertical distribution of elements in this regolith and to establish optimum sampling and analytical methods. The aim of this study is to understand the dispersion and variation of elements throughout the cover in a vertical profile. The results demonstrate that the main elements show a distribution pattern of enrichment in clay layers in the vertical profile, i.e., most elements tend to be enriched in the most upper part of the profile above the orebodies except for some elements like Cu, Ca and Ag. Meanwhile, both fine (-160 mesh) and coarse (+20 mesh) fraction samples from clay-rich horizons are favorable samples and selective leaching of the elements absorbed on clays or oxide coatings is effective for localizing buried deposits. The distribution of active Cu and Mo is quite different because chalcopyrite is weathered into Cu sulfate and CuCO3, and is precipitated in alkaline environments in a layer below close to the surface. Mo is soluble in the alkaline environment so it can penetrate the caliche layer and be enriched on the surface of soil enriched with weakly cemented clay.  相似文献   

15.
Some elements normally occur at trace levels while the majority of natural geological materials may be exceedingly enriched in some special cases, such as the Bayan Obo ore deposit where REE and Nb are extremely enriched. These elements may not be removed completely during purification. Therefore, matrix effects will be caused during stable isotope ratio measurement in the MC-ICP-MS. Experiments have shown that the established methods of chromatographic separation of Cu, Fe, and Zn using AG MP-1 Anion Exchange Resin cannot make ef-fective separation of Nb, W, and Cu from Fe using 20 mL 6 M HCl. It is also observed that the elution curves of W and Cu overlap at working conditions and thus W is present in measurable amounts in some sample solutions. Matrix effects in the MC-ICP-MS induced by Nb, W, and Cu during Fe isotope ratio measurements and by W during Cu isotope ratio measurements were thus investigated by examining their changes in delta values between doped and undoped standards. The results show that the effects of the matrix elements Nb, W, or Cu on Fe isotope ratio measurements are minimal in the case of m(Nb)/m(Fe)<0.005, m(W)/m(Fe)<0.01, or m(Cu)/m(Fe)<0.6. This finding, combined with the extremely low levels of W and Cu, and the fact that nearly 90% of Nb can be removed during purification, demonstrates that the methods of chromatographic separation of Fe established before are suitable for Bayan Obo ore samples and that the methods can be simplified when Cu elution is unnecessary. The effects of the matrix element W on Cu isotope determinations are minimal in the case of m(W)/m(Cu)<0.7. Therefore, W exerts no significant effect on the measurements of Cu isotopes for the majority of natural geological materials.  相似文献   

16.
Concentrations of some heavy metals and trace elements such as Cr, Ga, Ni, Zn, Mo, Cu, Pb, Yb, Y, Nb, Ti, Sr, Ba, Mn, Sc, Co, V, Zr, Fe, Al, W, Se, Bi, Sb, As, Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated. The distribution of the elements in the shells is categorized into four groups. Of these, concentrations of 12 elements (As, Bi, Cd, Co, Ga, Mo, Nb, Sb, Se, Sc, W and Yb) are below zero [(0.053-0.79)×10^-6]; concentrations of seven elements (Cr, Ni, Pb, V, Y, Zr and Cu) are (1.0-6.0)×10^-6; concentrations of four elements (Ti, Mn, Ba and Zn) are 10- 20×10^-6; and concentrations of five elements (Si, Al, Fe, Mg and Sr) are (47.44-268.11)×10^-6. The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina (Linn6), Pitar rudis (Poli), Nassarius reticulatus (Linn6), Venerupis senescens (Coocconi), Mytilus galloprovincialis (Lamarck), Mytilaster lineatus (Gemelin in Linne) and Chlamys glabra. It was found that, in mollusk taxonomy, the elements have unique values. In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks. In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment. Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

17.
Inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectroscopy, hydride generation-atomic fluorescence spectrometry, emission spectrometry, X fluorescence spectrometry, and X-ray diffraction were employed to study the geochemistry and mineralogy of coal gangues from Nos. 2, 3, and 8 coal seams of the Du’erping coal mine, Xishan coalfield, Taiyuan, Shanxi Province. The study revealed that compared with the sedimentary cover, upper continent crust, Carboniferous-Permian coal from North China, as well as most coal in China, coal gangues from Nos. 2 and 3 coal seams are rich in Li, Be, Sc, Cr, Cu, Ga, Ba, Th, Nb, Cd, Pb, Ta and rare-earth elements, and coal gangues from No. 8 coal seam are rich in Li, Sc, V, Cr, Ga, U, and rare-earth elements. Compared with the Carboniferous-Permian coal from North China and most coal in China, coal gangues from Nos. 2, 3 and 8 seams are rich in Rb, V, Cs and Sr. Therefore, The Du’erping coal gangues in the Xishan coalfield are rich in most hazardous trace elements and rare-earth elements, wherein the contents of Ga and Li reach the industrial grade and have significance for industrial utilization. On the whole, coal gangues of the Shanxi Formation from the Permian are rich in more trace elements than those of the Carboniferous Taiyuan Formation. The distributions of REE show obviously dipping rightwards with negative Eu anomalies. The contents of rare-earth elements in the three seams are quite different. All of the above indicate that the source of the rare-earth elements is terrigenous debris. Minerals in No. 2 seam identified by X-ray diffraction mainly include quartz, kaolinite, in addition to calcite, pyrite, apatite, epidote, and epsomite. No. 3 seam mainly contains quartz, kaolinite, in addition to a small amount of sodium feldspar, calcium nitrate, iron ore, gypsum, and vivianite. No. 8 seam mainly contains kaolinite, dickite, quartz, illite, and a small amount of hematite and U. The correlations between major elements and trace elements in coal gangues of the Du’erping coal mine analyzed by using SPSS (Statistical Product and Service Solutions) indicate that the trace alkali elements and rare-earth elements occur mainly in such clay minerals as kaolinite.  相似文献   

18.
This paper presents a study of the major and trace element compositions of fresh mantle-derived spinel lherzolite and harzburgite inclusions from Cenozoic alkaline basalt in Mount Lianshan and Mount Panshi, Liuhe County, Jiangsu Province. An estimation is made of the contents of the major elements and some of the trace elements in the primitive mantle source region of the area, from which the authors have obtained MgO/Al2O3= 7.86. The contents of MgO and Al2O3 are also obtained as 37.58% and 4.78% respectively based on the correlation of MgO-Al2O3. Then, the contents of various elements in the primitive mantle are calculated using their regression equations with MgO, and the compositor) of the primitive mantle, a basic issue in geochemistry study, is discussed on that basis.  相似文献   

19.
Major and trace elements analysis has been carried out on the Late Ladinian Tabai basalts from Yunnan Province with the aim of studying their petrogenesis. Their SiO2 contents range from 43.63 wt.% to 48.23 wt.%. The basalts belong to the weakly alkaline(average total alkalis Na2 O+K2O=3.59 wt.%), high-Ti(3.21 wt.% to 4.32 wt.%) magma series. The basalts are characterized by OIB-like trace elements patterns, which are enriched in large ion lithosphile elements(LILE) including Rb and Ba, and display negative K, Zr and Hf anomalies as shown on the spider diagrams. The Tabai basalts display light rare-earth elements(LREE) enrichment and are depleted in heavy rare-earth elements(HREE) on the REE pattern. Those dates indicate that the parental magma of the Tabai basalts was derived from low-degree(1%–5%) partial melting of garnet peridotite. The magma underwent olivine fractional crystallization and minor crustal contamination during their ascent. The Tabai basalts were related to a relaxation event which had triggered the Emeishan fossil plume head re-melting in the Middle Triassic.  相似文献   

20.
Nowadays, environmental problems related to soil pollution with heavy metals are numerous, therefore, it is important to understand metal behavior in aquatic sediments and soils and to appreciate their transfer. The fate of the metals in the environment is closely related to their interactions with the major reactive compartments (organic matter, iron and manganese oxides, clays). The objective of this work is to develop an approach based on the combination of several models to study metal ion speciation in different environmental systems. Models used to describe the interactions of metals with the main reactive phases in the soil are CD-MUSIC (amorphous and crystallized iron oxides), NICA-Donnan (organic matter and manganese oxides), and cationic ion exchange model (clays). Firstly, this work implies the definition of generic parameters to describe the interactions of the studied metals with iron and manganese oxides, a part of this information is missing in the literature. Then, after the validation of the approach by comparison with analytical results, this multi-surface model is applied to test sites corresponding to a soil and to two riverine environments. These new models give good predictions of the behavior of major and trace metal ions even in heterogeneous system characteristics of the natural environment. The measured free metal concentrations in the solution are in agreement with those obtained from model calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号