首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effects of poultry manure and pistachio compost with and without phosphorus fertilizer on the kinetics of phosphorus desorption in two calcareous soils of Kerman and Koohbanan farms in the southeastern of Iran. For this purpose mono potassium phosphate, at rates of 0, and 100 parts per million of phosphorus, and air-dried manure, at rates of 0 and 4% were mixed with the soils. The soils were incubated at 24–25°C and near field capacity for 90 days in the greenhouse. Afterwards, the desorption of P was studied by the successive extraction with 0.5 M NaHCO3. The results of this research indicated that application of OM and fertilizer P combined increased P recovery in each of the extraction time, adding poultry manure and 100 mg phosphorus together to the soils, increased P desorption more than pistachio compost in the soils. The phosphorus desorption rate was initially rapid and then became slower until equilibrium was approached. Kinetic data were best described by power function and simple Elovich equations. Subsequent to these equations, parabolic diffusion equation was also well fitted the time-dependent P desorption data.  相似文献   

2.
3.
The competitive adsorption of trace elements is a key issue in assessing the mobility of trace elements in calcareous soils and can be affected by disposal of sewage sludge, municipal waste, and poultry manure. The effect of municipal sewage sludge, poultry manure, and municipal waste compost on the sorption of cadmium (Cd), copper (Cu), zinc (Zn), and nickel (Ni) in surface samples of three calcareous soils was studied. As the applied concentrations increased, Cu and Cd adsorption increased, while Zn and Ni adsorption decreased in all treatments. Based on the distribution coefficient (K d) values and proportion of increase or decrease in metal adsorption, the selectivity sequence in control and amended soils found was Cu ≫ Cd ≫ Ni > Zn and Cu ≫ Cd ≫ Zn > Ni, respectively. In general, among control and amended soils, control soils showed the highest K d for Cd, Cu, and Ni, while sludge, poultry manure, and composted waste-amended soils had lowest K d for Cd, Cu, and Ni, respectively. In the case of Zn, composted waste-amended and control soils had highest and lowest K d, respectively. The present experimental results indicated that the addition of organic amendments to these calcareous soils reduced the sorption of Cd, Cu, and Ni. Thus, the effects of preferential adsorption and organic matter should be considered in assessing the risk associated with applying sewage sludge, poultry manure, and composted material to calcareous soils.  相似文献   

4.
Municipal solid waste compost and cattle manure are used as organic fertilizers in agriculture and horticulture. These wastes, however, may also have some negative effects on the agricultural environment. This study investigates the effects of municipal solid waste compost of Kerman (MSC) and cattle manure (CM) on availability of the heavy metal in calcareous soil (extractable with EDTA) in greenhouse conditions. The MSC and CM were mixed thoroughly with soil at rates of 0%, 2%, and 4% of dry matter. After 90 days of incubation, the soil samples were analyzed. Addition of levels of each two organic wastes into soil significantly decreased the soil pH and increased the soil EC as compared with control (unamended soil).The available contents (EDTA-extractable) of Cd, Pb, Cu, Zn, and Cu in the soil samples were increased because of each two organic treatments applied. The heavy metal contents in the soil samples amended with MSC were more than CM. The heavy metal contents of organic wastes were well below the maximum allowed by USEPA. It is recommended that in Iran, the legal maximum permissible limit for heavy elements in organic wastes must be determined.  相似文献   

5.
The aim of this study was to assess the influence of pH on copper mobilization in two copper-rich acid soils (from vineyard and mine) amended with crushed mussel shell. Crushed mussel shell amended soils (0–48 Mg ha?1) were subjected to the effect of several acid and alkali solutions in a batch experiment in order to study their copper release. Copper distribution was studied in decanted soils from batch experiments using a sequential extraction procedure, whereas the effect of crushed mussel shell on copper release kinetics was studied using a stirred flow reactor. When soils were treated with acid solutions, the copper mobilization from non-amended soils was significantly higher than from the amended samples. Major changes in copper fractionation were an increase of the acid soluble fraction in acid-treated vineyard soil samples with shell dose. For the mine soil, the oxidable fraction showed a relevant diminution in acid-treated samples at the highest crushed mussel shell dose. For both soils, copper desorption rates diminished up to 86 % at pH 3 when crushed mussel shell was added. At pH 5, copper release rate was very slow for both soils decreasing up to 98 % for the mine soil amended with the highest shell dose, whereas no differences were observed at pH 7 between amended and non-amended soils. Thus, crushed mussel shell addition could contribute to reduce potential hazard of copper-enriched soils under acidification events.  相似文献   

6.
The bulk of fly ash (an inorganic waste of coal-fired power generation) produced is deposited in disposal areas where it needs to be revegetated. The effects of addition of three conventional organic amendments (biosolids, poultry manure, green waste compost), or poultry manure-derived biochar, to coal fly ash (at two rates) on some key chemical, physical and microbial properties and on growth of Rhodes grass (Chloris gayana) was studied in a laboratory incubation/greenhouse study. Addition of all amendments, including biochar, increased concentrations of extractable Mg, K, Na and P and CEC(pH 7.0). Additions of poultry manure, and particularly biosolids, also greatly increased levels of extractable NH4 + and NO3 -N. Addition of biosolids, green waste compost and biochar resulted in a decrease in macroporosity, a concomitant increase in mesoporosity and, at the high rate of addition, an increase in available water-holding capacity. Basal respiration was very low in fly ash and was increased by addition of all amendments; metabolic quotient was markedly greater in control than amended treatments. Biosolids, poultry manure and green waste compost additions all increased microbial biomass C. Growth of Rhodes grass was extremely low under unfertilized conditions in control, biochar and, to a lesser extent, green waste compost treatments but addition of poultry manure and the lower rate of biosolids resulted in large increases in yields. Although biochar additions increased extractable Ca, K, P, Cu, Zn and Mn, CEC, mesoporosity and water-holding capacity, they had a little or no stimulatory effect on the size of the soil microbial community, N fertility or plant growth. This was attributable to the lack of metabolisable C and an insignificant N-supplying capacity.  相似文献   

7.
Effect of addition of municipal solid waste compost (MSWC) on two metals viz. copper (Cu) and zinc (Zn) contents of submerged rice paddies were studied. Experiments were conducted during the three consecutive wet seasons from 1997 to 1999 on rice grown under submergence, at the Experimental Farm of Calcutta University, India. A sequential extraction method was used to determine the metal (Cu and Zn) fractions in MSWC and cow dung manure (CDM). Both metals were significantly bound to the organic matter and Fe and Mn oxides in MSWC and CDM. Metal content in rice straw was higher than in rice grain. Metal bound with Fe and Mn oxides in MSWC and CDM best correlated with straw and grain metal followed by exchangeable and water soluble fractions. Carbonate, organic matter bound and residual fractions in MSWC and CDM did not significantly correlate with rice straw and grain metal. The MSWC would be a valuable resource for agriculture if it can be used safely, but long-term field experiments with MSWC are needed to assess by regular monitoring of the metal loads and accumulation in soil and plants.  相似文献   

8.
Desorption of Cu and low molecular weight dissolved organics are the primary factors that impact fate and transport of Cu in soils. To improve predictions of the toxicity and threat from Cu contaminated soil, it is critical that time-dependent desorption behavior be understood. In this paper, the effect of organic ligands citrate, malate, and succinate on the kinetics of Cu desorption from contaminated soils varying widely in soil characteristics was investigated at 25° C and the soils used were referred to as clay, calcareous and sandy soils. The amount of Cu released by the used organic ligands varied greatly with physicochemical properties of the soils. The rate of Cu release by different extractants was in the order citric > malic > succinic, which was consistent with the stability constants of Cu complexes with these ligands. The modified Freundlich and the Elovich and Parabolic diffusion models were used to describe dsorption of Cu2+ from the three studied soils as affected by the organic ligands. All of the models fit the data well with correlation coefficients ranging from 0.83 to 1.00 (P < 0.01). Each Model has a set of assumptions for the different physical and chemical properties of the systems to which they are being applied. The uses of these equations yield different magnitudes for the calculated variable, but the relationships between the soil + organic ligands and their effect (i.e., increase or decrease) on these variables are the same. Such information is critical, since Cu is used in a variety of industrial and manufacturing processes and is one of the most common contaminants found at hazardous waste sites.  相似文献   

9.
Most arid and semi-arid soils, especially calcareous sandy soils, are widely distributed in the Middle East region; the deficiency in their content of many nutrients particularly phosphorus and organic matter limits crops production. This study aimed to assess the effects of adding biochar (B) with farmyard manure (FYM) and poultry manure (PM) on some soil properties, phosphorus (P) availability, and barley growth in calcareous sandy soil. The pot experiment includes the following treatments: Control, B, B?+?FYM (1:1), B?+?PM (1:1), B?+?FYM (2:1), B?+?PM (2:1), FYM?+?B (2:1), and PM?+?B (2:1). Biochar combined with FYM and PM enhanced the water holding capacity (WHC) and soil organic matter (SOM) content in calcareous sandy soil. Phosphorus availability was increased significantly by applying biochar mixed with farmyard manure and poultry manure at all treatments. Green biomass of barley improved because of adding biochar alone, poultry manure alone, and biochar co-applied with poultry manure at all mixing ratios. Biochar application caused significant increases in phosphorus use efficiency (PUE) by barley plants compared to all other treatments, except for the control. We recommend adding biochar either individually or mixed with poultry manure to improve the productivity of calcareous sandy soil.  相似文献   

10.
In many river basins, floodplain soils have accumulated a variety of metal contaminants, which might be released during periods of flooding. We investigated the dynamics of copper, cadmium, lead, zinc, and nickel in a contaminated freshwater floodplain soil under a realistic sulfate-limited flooding regime in microcosm experiments. We found that most contaminants were initially mobilized by processes driven by the reductive dissolution of Fe(III) and Mn(IV, III) (hydr)oxides. Subsequently, bacterial sulfate respiration resulted in the transformation of the entire available sulfate (2.3 mmol/kg) into chromous reducible sulfur (CRS). Cu K-edge X-ray absorption fine structure (XAFS) spectroscopy revealed that the soil Cu speciation changed from predominantly Cu(II) bound to soil organic matter (SOM) intermittently to 14% metallic Cu(0) and subsequently to 66% copper sulfide (CuxS). These CuxS precipitates accounted for most of the formed CRS, suggesting that CuxS was the dominant sulfide phase formed in the flooded soil. Sequential metal extractions, in agreement with CRS results, suggested that easily mobilizable Cd was completely and Pb partially sequestered in sulfide precipitates, controlling their dissolved concentrations to below detection limits. In contrast, Zn and Ni (as well as Fe) were hardly sequestered into sulfide phases, so that micromolar levels of dissolved Zn and Ni (and millimolar dissolved Fe(II)) persisted in the reduced soil. The finding that Cu, Cd, and Pb were sequestered (but hardly any Zn, Ni, and Fe) is consistent with the thermodynamically predicted sulfide ladder following the increasing solubility products of the respective metal sulfides. The observation that Cd and Pb were sequestered in sulfides despite the presence of remaining SOM-bound Cu(II) suggested that the kinetics of Cu(II) desorption, diffusion, and/or CuxS precipitation interfered with the sulfide ladder. We conclude that the dynamics of multiple metal contaminants are intimately coupled under sulfate limitation by the relative thermodynamic stabilities and formation kinetics of the respective metal sulfides.  相似文献   

11.
针对浙江省主要粮食、油料大宗作物以及蔬菜、茶叶等各类典型经济作物,选择典型种植区开展了农产品及根系土壤调查,根系土壤样测定了土壤有机质、酸碱度及十多种重金属元素含量,农产品样测定了十多种重金属元素含量。采用分类统计、相关分析、含量分布散点图等方法,研究了农产品与土壤中重金属含量关系。结果表明,作物种类是决定农产品重金属含量的最主要因素;农产品与土壤中重金属含量总体上具有共消长的趋势;土壤有机质、pH值是影响作物对土壤重金属吸收累积的重要环境因素;作物样品采集、加工和分析过程中沾污问题可能会对土壤-农产品重金属含量的相关性产生较大影响。  相似文献   

12.
福建铁观音茶园生态地球化学特征   总被引:4,自引:2,他引:2       下载免费PDF全文
东南沿海是铅等重金属的地球化学高背景区。该地区广泛分布酸性红壤,酸雨沉降、不适当施肥导致土壤酸化以及由此引发土壤重金属生态风险令人关注。以福建省铁观音主产区为研究区,采集了79个茶园的表层和亚表层土壤样、茶叶样品,测定了重金属元素以及土壤常量元素和理化指标。研究表明,福建铁观音茶园土壤中Hg、Pb、Se、Zn高含量主要由地质背景所引起,土壤常量组分、有机质、酸碱度等理化条件对土壤元素含量有一定的影响;铁观音茶树老叶中As、Cd、Cr、Hg、Se、Pb、F等非植物营养元素含量明显高于嫩叶,显示这些元素随植物生长逐渐累积的特征,而嫩叶中植物生长必需的营养元素Cu、(Ni)、Zn则高于老叶,反映出微量营养元素在茶叶生长部位相对富集的特征;多数情况下土壤与茶叶间元素含量相关性差,说明茶树对土壤元素的吸收累积受到多种复杂因素的影响。研究表明茶叶与土壤Pb、Cr具有显著正相关性,为建立铅污染土壤生态效应预测评价模型提供了基础依据。  相似文献   

13.
The importance of trace metal scavenging by organic matter in geochemical samples was estimated using an alkaline sodium hypochlorite extraction to leach copper, zinc, molybdenum, iron and manganese from a variety of soils, and stream and lake sediments collected on the Nechako plateau, central British Columbia. The reagent oxidizes or dissolves most forms of organic matter, together with any sulphide minerals, to give strongly coloured extracts containing the associated trace elements at a pH where solution of other sample fractions is at a minimum. Metals precipitated due to alkaline conditions are redissolved by a succeeding distilled-water leach (pH 3.0 ± 0.3).A large fraction of the copper, zinc, molybdenum, and manganese held within the organic fraction of the A soil horizon is liberated whereas only minor amounts of copper, zinc, and manganese are released from inorganic soil (B and C) horizons. Molybdenum, however, is relatively soluble in all soils as the molybdate ion. Despite similar concentrations of organic matter in A horizon soils and stream sediments the latter release a lower proportion of their trace element content. Behaviour of the organic fraction of lake sediments varies from lake to lake and there is great variability in the association of copper, zinc, molybdenum and manganese with organic matter even within the same lake.The presence of organic matter in samples subjected to other partial extractions can be a deleterious factor if the organic fraction is not first removed by a hypochlorite extraction.  相似文献   

14.
Phosphorus (P) desorption characteristics may be altered due to the biosolids decomposition during the incubation period. In our previous work we studied the phosphorus release kinetics in biosolids-amended calcareous soils with no prior incubation. The objectives of this work were (1) to assess the phosphorus desorption behavior in soils as influenced by biosolids after 5 months of incubation and (2) to evaluate the influences of six levels of the biosolids on phosphorus availability and salinity of soil. The results showed that the biosolids addition significantly increased the soil available P and salinity. The P availability and salinity of the soils increased as level of the biosolids application increased. However, there was no significant difference between some application rates for some soils. The results indicated that the incubation can affect the factors controlling the P release rate. Also, the results showed that the soil organic matter negatively affected the P desorption rate in the biosolids-treated soils.  相似文献   

15.
It is essential to have suitable tools able to trace the fate of manure organic matter in the environment to assess whether manure disposal on the soils of catchments could affect the organic quality of rivers. Sterol compounds – mainly expressed as C29 + 28/C27 and 5β/C27 ratios – have been shown to be specific molecular tracers of pig, dairy and poultry manures in soils. The objective of this study was to measure C29 + 28/C27 and 5β/C27 ratios in five Brittany rivers (Elorn, Yar, Léguer, Min Ran and Couesnon) draining agricultural catchments receiving massive annual inputs of pig, poultry and dairy manures and compare these ratios with ratios published for enriched soils and manure samples. The particulate organic fractions from the studied rivers yielded steroid signatures typical of animal manures. More specifically, a stanol compound diagnostic of pig slurry – the 5β-stanol known as coprostanol – was found to be very widespread, with particularly high concentrations in one of the rivers (Elorn). The C29 + 28/C27 and 5β/C27 ratios of the particulate fractions of the rivers were compared with ratios measured directly in pig, dairy and poultry manure samples, as well as with the breeding activities on river catchments. These comparisons show that the steroid profiles of the five investigated rivers correlate closely with the types of manure (i.e. pig, poultry or dairy) spread on soils in their catchments. For instance, the C29 + 28/C27 and 5β/C27 ratios in the Elorn river are similar to the values typical of pig slurry (e.g. 5β/C27 > 4); compared with other catchments, the soils in this area receive by far the largest amount of pig slurry. By contrast, the Yar river drains a catchment receiving only poultry and dairy manures, and its soils exhibit C29 + 28/C27 and 5β/C27 ratios similar to those of dairy and poultry manures (e.g. 5β/C27 ∼ 1). Thus, this study indicates that the organic quality of rivers is modified in catchments where there is intense manure spreading on soils. It also provides evidence that rivers draining areas receiving different manure types may exhibit differences in the long-term evolution of their OM content. Indeed, two of the investigated river catchments receive dominantly dairy and poultry manure, and exhibit clear long-term upward trends in OM. On the other hand, one catchment receiving high proportions of pig slurry clearly shows a long-term downward trend in OM contents. A survey of the literature shows that the relative amount of OM and N received by soils in agricultural catchments could be the key parameter in determining the direction of the long-term OM trend of the river, rather than the absolute amount and/or type of manure that is applied to the soil. In any case, the present study suggests that sterol/stanol compounds may be of diagnostic value in determining whether a stream or a river is undergoing contamination by manure-derived organic matter.  相似文献   

16.
Rhizosphere has different chemical and biological properties from bulk soils. Information about copper (Cu) desorption characteristics in the rhizosphere soils is limited. The objectives of this study were to determine Cu desorption characteristics and the correlation of its parameters with Cu extracted by DTPA-TEA, AB-DTPA and Mehlich 3 in bulk and rhizosphere amended soils with sewage sludge (10 g of sewage sludge was added to 1 kg soil) under greenhouse conditions in a rhizobox. The kinetics of Cu desorption in the rhizosphere and bulk was determined by successive extraction with DTPA-TEA in a period of 1 to 504 h at 25 ± 1 °C. The results showed that Cu extracted using several chemical extractants in the rhizosphere were significantly (P < 0.05) lower than in the bulk amended soils. In addition, Cu extracted using successive extraction in the rhizosphere were significantly (P < 0.01) lower than in the bulk soils. The best model for describing extraction data for the bulk and rhizosphere soils was the parabolic diffusion equation. Desorption kinetics of Cu conformed fairly well to first order and power function models. The results indicated that Cu diffusion rate in the wheat rhizosphere soils lower than in the bulk soils. Cu desorption rate in parabolic diffusion ranged from 0.326 to 0.580 mg kg?1 h?1/2 in the bulk soils, while it ranged from 0.282 to 0.490 mg kg?1 h?1/2 in the rhizosphere soils. Significant correlation (P < 0.05) between determine R values of parabolic diffusion and Cu desorption during 504 h with extracted Cu using DTPA-TEA, AB-DTPA and Mehlich 3 were found in the bulk and the rhizosphere soils. The results of this research revealed that Cu desorption characteristics in the wheat rhizosphere soils are quite different from bulk soils amended with sewage sludge.  相似文献   

17.
我国部分地区土壤污染形势严峻,主要表现为Cu等重金属元素严重超标。污水灌溉以及含Cu饲料过量使用等不合理的农业生产方式是导致Cu在耕地中富集的主要因素,严重威胁粮食安全和人类健康。以河北保定典型污灌区为研究区,通过静态吸附批量实验探究土壤吸附Cu的动力学和热力学特性。吸附动力学模型和等温吸附经验模型中得到的参数一致表明,表层土壤S1对Cu的吸附能力强于底部土壤S2。S1的有机质含量高于S2,提供了更多的表面吸附点位,这可能是导致土壤S1对Cu的吸附能力更强的原因之一。离子强度对土壤Cu吸附率的影响较小。溶液pH和溶解性有机物(DOM)含量对土壤Cu吸附率的影响明显,pH值与吸附量呈正相关,DOM浓度与吸附量呈负相关。由于土壤对pH有很强的缓冲能力,短时间的酸雨可能不会导致Cu的迁移。施用有机肥时,有机肥浸出液中高浓度的DOM可能会与Cu形成水溶性Cu-DOM络合物,促进Cu在土壤中的迁移,导致浅层地下水污染。  相似文献   

18.
A field study was carried out to evaluate long-term heavy metal accumulation in the top 20 cm of a Tunisian clayey loam soil amended for four consecutive years with municipal solid waste compost at three levels (0, 40 and 80 t/ha/y). Heavy metals uptake and translocation within wheat plants grown on these soils were also investigated. Compared to untreated soils, compost-amended soils showed significant increases in the content of all measured metals: cadmium, chromium, copper, nickel, lead and zinc in the last three years, especially for plots amended with municipal solid waste compost at 80 t/ha/y. Wheat plants grown on compost-amended soils showed a general increase in metal uptake and translocation, especially for chromium and nickel. This heavy metal uptake was about three folds greater in plots amended at 80 t/ha/y as compared to plots amended at 40 t/ha/y. At the end of the experimental period, the diluting effect resulting from enhanced growth rates of wheat plants due to successive compost applications resulted in lower concentrations in the plants (grain part) grown on treated plots. On the other hand, chromium and nickel were less mobile in the aerial part of wheat plants and were accumulated essentially in root tissues. Plant/soil transfer coefficients for compost-amended treatments were higher than threshold range reported in the literature, indicating that there was an important load/transfer of metal ions from soils to wheat plants.  相似文献   

19.
Copper contamination in soils and vegetables in the vicinity of an abandoned copper mine in China was investigated. The Cu concentrations of 93 soil samples ranged from 30.4 to 3,191 mg kg−1 soil for a mean of 816.8 mg kg−1 soil. Among 15 samples from a 0 to 20-cm soil layer used for the toxicity characteristic leaching procedure (TCLP) test, the highest value of Cu-TCLP was 133.8 mg kg−1 soil and the TCLP values were positively correlated with the total Cu content of the soils. The sequential extraction of soils in the 0–20-, 20–40-, and 40–60-cm soil layers showed that Cu existed mainly in the Fe–Mn oxide fraction, sulfide/organic fraction, and residual fraction. The copper contamination of 21 species of vegetables from in situ sampling was also examined. Cu concentrations in the edible portions of Brassica chinensis and Solanum melongena were higher than the FAO/WHO standard (40 mg kg−1 DW). The health risk of copper for local inhabitants from consuming these vegetables was assessed on the basis of the target hazard quotient. Enriched concentrations of copper were also found in situ in eight cultivars of B. chinensis planted in the fields, with two levels of Cu concentration. The results showed that there is severe copper contamination in this mine area, and the pollutant in soils show a high risk of leaching into the groundwater and diffusing through the food chain.  相似文献   

20.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号