首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple model is deduced for the surface layer of a convective boundary layer for zero mean wind velocity over homogeneous rough ground. The model assumes large-scale convective circulation driven by surface heat flux with a flow pattern as it would be obtained by conditional ensemble averages. The surface layer is defined here such that in this layer horizontal motions dominate relative to vertical components. The model is derived from momentum and heat balances for the surface layer together with closures based on the Monin-Obukhov theory. The motion in the surface layer is driven by horizontal gradients of hydrostatic pressure. The balances account for turbulent fluxes at the surface and fluxes by convective motions to the mixed layer. The latter are the dominant ones. The model contains effectively two empirical coefficients which are determined such that the model's predictions agree with previous experimental results for the horizontal turbulent velocity fluctuations and the temperature fluctuations. The model quantitatively predicts the decrease of the minimum friction velocity and the increase of the temperature difference between the mixed layer and the ground with increasing values of the boundary layer/roughness height ratio. The heat transfer relationship can be expressed in terms of the common Nusselt and Rayleigh numbers, Nu and Ra, as Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaGOmaaaaaaa!3779!\[{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\]. Previous results of the form Nu ~ Ra% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% aIXaaabaGaaG4maaaaaaa!377A!\[{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\] are shown to be restricted to Rayleigh-numbers less than a certain value which depends on the boundary layer/roughness height ratio.  相似文献   

2.
陆气相互作用对中尺度对流系统影响的研究进展   总被引:1,自引:1,他引:0  
单机坤  沈学顺  李维京 《气象》2013,39(11):1413-1421
文章回顾了大气对地表性质的敏感性研究,以及陆气相互作用对中尺度天气过程的影响,说明了地表性质与积云对流及对流降水之间的联系。地表性质的改变对行星边界层的热通量、水汽通量、对流有效位能产生影响,并通过湍流的垂直输送,进而影响到其上大气的性质。陆气之间存在着复杂的、非线性的相互作用。性质不均匀的下垫面造成地表向大气感热通量和潜热通量的差异,从而在近地层大气中形成温度和气压梯度,产生局地环流,在条件适合的情况下可以形成对流,并产生降水,而降水的不均匀分布,又维持了下垫面的不均匀性。土壤湿度对对流的影响受到多个因素的制约,其中天气尺度过程的影响是很显著的;由非均匀的下垫面所产生的局地环流能够触发积云对流。  相似文献   

3.
The viscous semigeostrophic solutions obtained for the baroclinic Eady wave fronts are analyzed for the generation of the cross-frontal temperature gradient in the boundary layer. In the case of free-slip boundaries, the cross-frontal gradient is maximally generated at the surface by meridional temperature advection. In the case of no-slip boundaries, surface friction reduces the meridional temperature advection in the boundary layer: The maximum generation occurs above the surface layer and the temperature gradient at the surface is maintained by vertical diffusion. The no-slip solution is compared with the Ekman-layer model solution. Errors are quantified for the use of the Ekman-layer model in the mature state of frontogenesis.The surface frontogenesis is found to be affected by diffusivity both directly and indirectly. The direct effect of diffusivity is represented explicitly by the diffusion term in the potential temperature equation. The indirect effect of diffusivity is related implicitly to the temperature advection caused by the viscous part of the ageostrophic motion whose horizontal velocity component is defined by the frictional wind deflection (away from the geostrophy). The direct effect of diffusivity is frontolytical, whilst theindirect effect of diffusivity is frontogenetic in the mesoscale vicinity of the front. The indirect effect of diffusivity contributes dominantly to the mesoscale surface frontogenesis for the free-slip case, but it is offset by the divergence of the dynamic part of the ageostrophic motion at the surface level for the non-slip case.  相似文献   

4.
The impact of well watered mesoscale wheat over mid-latitude arid areas on mesoscale boundary layer structures (MBLS) and climate has been investigated in the study .using a mesoscale biophysical, meteorological model (BM) developed in the current study. The BM is composed of six modules:mesoscale atmospheric module, soil module, vegetation module, snow-atmosphere interaction module, underlying surface meteorology module and subgrid scale flux parameterization module. The six modules constitute an interacting system by supplying boundary conditions to each other.The investigation indicates that a horizontal pressure gradient associated with mesoscale perturbations in temperature and humidity is created during the day, which results from more water transpired from the vegetation canopy (VC) and evaporated from underlying wet soil. Non-classical mesoscale circulations (called as vegetation-breeze) are forced by the pressure perturbations with wind speeds about 5 m / s, flowing from the VC to the adjacent  相似文献   

5.
The ordinary multidimensional reductive perturbation method is generalized so as to apply to the general case including the dissipative factor. With this the corresponding Cubic-Schrödinger equation is deduced, and by the preliminary study of its solution, it shows that it is more admissible to consider atmospheric meso-scale systems as the nonlinear Cubic-Schrödinger waves. With suitable boundary and initial conditions, the Cubic-Schrödinger equation is numerically integrated so as to investigate the possible dynamic mechanism as well as the impacts of the nonlinear action, turbulent friction and topogrphy to the formation of the LLJ. The results indicate that the downward transfer of the momentum and the effect of the surface friction are responsible for the concentration of the momentum in the layer between 850 and 700 hPa. The location of the horizontal concentration of momentum depends on the propagation of momentum, in the process the inertia-gravity internal wave is very important, whereas turbulent friction is unfavourable for or delays the formation of the low level jet.  相似文献   

6.
The temporal spectral response of a coupled land-atmosphere system to daily forcing of net radiation at the land surface is investigated using the analytic approach. The original definition of the problem dates back to an early study by Lettau. The present study builds on the problem and introduces some important additions, with a focus on the propagation of heat flux and temperature waves in both the soil and the atmospheric boundary layer. The study highlights the dependence of the complex amplitude of surface temperature and heat fluxes on the different land-surface parameters, such as friction velocity, evaporative fraction, aerodynamic resistance and vegetation height. Finally, the dependency of surface state variables to the frequency of the forcing is analyzed.  相似文献   

7.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

8.
The South China Sea(SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000–2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies. The results showed cold-core cyclonic(warm-core anticyclonic) eddies tend to cool(warm) the overlying atmosphere and cause surface winds to decelerate(accelerate). More than 5% of the total variance of turbulent heat fluxes, surface wind speed and evaporation rate are induced by mesoscale eddies. Furthermore, mesoscale eddies locally affect the columnar water vapor, cloud liquid water, and rain rate. Dynamical analyses indicated that both variations of atmospheric boundary layer stability and sea level pressure are responsible for atmospheric anomalies over mesoscale eddies. To reveal further details about the mechanisms of atmospheric responses to mesoscale eddies, atmospheric manifestations over a pair of cold and warm eddies in the southwestern SCS were simulated. Eddy-induced heat flux anomalies lead to changes in atmospheric stability. Thus, anomalous turbulence kinetic energy and friction velocity arise over the eddy dipole, which reduce(enhance) the vertical momentum transport over the cold(warm) eddy, resulting in the decrease(increase) of sea surface wind. Diagnoses of the model's momentum balance suggested that wind speed anomalies directly over the eddy dipole are dominated by vertical mixing terms within the atmospheric boundary layer, while wind anomalies on the edges of eddies are produced by atmospheric pressure gradient forces and atmospheric horizontal advection terms.  相似文献   

9.
云和气溶胶对温度影响的初步研究   总被引:1,自引:0,他引:1  
  相似文献   

10.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

11.
The governing equations are developed for a steady-state frictional geostrophic inhomogeneous 1.5-layer ocean model, with horizontal velocity field that is linearly sheared in the vertical coordinate. We show that in the adiabatic, thermally non-diffusive limit there are an infinite number of solutions for the temperature and depth fields of the subtropical gyre even with the constraint of identical mass within each temperature range. In the non-adiabatic case, a unique subtropical gyre solution exists that can exhibit a temperature front, containing an unbounded meridional gradient, in the northwest corner of the solution domain. The role of mixing of enthalpy in the western boundary layer (WBL) region was investigated by comparing the two extreme cases of no mixing and complete mixing of enthalpy in this region. Also investigated was the dependence of the meridional heat transport on the air–sea heat exchange coefficient, κ. The temperature field was found to be strongly influenced by mixing. However, both qualitatively and quantitatively, the heat transport is similar in the model with and without mixing. The heat transport attains a single local maximum at κ=κc, that lies within values that are oceanographically relevant.  相似文献   

12.
张治坤  桑建国 《大气科学》2000,24(5):694-702
采用北京大学三维的复杂地形中尺度模式,结合陆面过程模式(SiB),模拟了草原和沙漠并存的下垫面的边界层大气运动.利用SiB模式计算了地表辐射、感热、潜热通量,并且预报地表温度.中尺度模式则模拟了沙漠地区受热抬升,形成的辐合运动,垂直速度的分布,不同高度上水平流场的变化以及中尺度动量和热量通量,把中尺度通量跟湍流通量进行了比较,以确定这种中尺度运动在GCM模式的参数化过程中的重要性.试验表明中尺度通量尤其是热量通量要比湍流通量大很多.  相似文献   

13.
In air stratified by a specific humidity gradient, the vertical motions result in variations in specific humidity (mixing ratio) near the underlying surface. This, in turn, causes a variation of evaporation from the surface, resulting in horizontal thermal inhomogeneities on the surface, which under certain conditions can strengthen the initial vertical motions. The linear problem of the stability of the system under consideration is solved in this paper, boundaries of the unstable region are defined, and specific values of growth rates of disturbances are investigated. The estimates show that even in a density-stratified atmospheric layer over a moist surface, rapid development of disturbances with horizontal scales of several hundred metres is possible. The horizontal sizes of the most rapidly growing modes, as a rule, are an order of magnitude larger than the vertical sizes. The possibility of observing this instability under natural conditions is discussed.  相似文献   

14.
The adjustment of airflow across sea-surface temperature changes is examinedusing aircraft eddy-correlation data. Major features of the observed flow adjustmentare not included in the theory of internal boundary layers. However, the data samplesize and coverage are not sufficient to accurately quantify the additional influences.With flow from warm water over cooler water, substantial turbulence intermittentlydevelops above the newly formed surface inversion layer. The corresponding,spatially-averaged, downward momentum flux is stronger than that close to the surface.With stably stratified flow over modest increases of sea-surface temperature, areduction of stratification can trigger episodic shear generation of turbulence. Inthese cases, the primary role of increasing surface temperature in the downwinddirection is to induce shear generation of turbulence. With larger increases ofsurface temperature, upward heat flux generates turbulence, warms the air and generates a significant horizontal gradient of hydrostatic pressure. This contributionto the pressure field appears to strongly modify the flow. Major inadequacies inexisting data and future needs are noted.  相似文献   

15.
本文选取行星边界层几个不同的水平温度梯度、不同的相对湿度以及地面热力分布不均匀值,用二维数值模式对一次飑线过程进行研完,其结果表明:水汽凝结潜热是对流运动发展的重要能量来源,边界层内水平温差是对流发展的重要触发条件,地面热力条件只有在有利条件配合下才可能起明显的作用。  相似文献   

16.
城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式,能够模拟出北京连续5日高温的特征和城市热岛强度的变化。城市下垫面的不透水性决定了城区2 m高度处相对湿度低于乡村,削弱了城区通过潜热调节城市气温的能力。日落后,城市感热通量下降缓慢,城区降温速率小于乡村,夜间边界层稳定、高度低,风速小,抑制了城乡之间能量的传输,形成了夜间强的城市热岛强度,造成夜间城市气温明显高于乡村。日出后城乡地面感热通量、潜热通量迅速上升,边界层稳定性下降。午后,城市下垫面分别为地表感热通量和潜热通量的高、低值中心,通过潜热调节气温的能力被削弱;边界层稳定性降低,有利于能量的垂直扩散;此时,城市热岛强度小于夜间。因此,北京城市下垫面形成了明显的城市热岛效应,加重了城区极端高温事件的强度。此外,在这次高温热浪期间,中国东部大部分地区受到大陆暖高压控制,晴空少云,西北气流越山后形成焚风效应,是北京地区高温热浪形成的天气背景。  相似文献   

17.
Some kinematic and dynamic structures of a microburst-producing storm in Colorado were investigated. Dual-Doppler data collected on 14 July, 1982 at 1647 MDT, during the Joint Airport Weather Studies (JAWS) project at Denver's Stapleton International Airport, were objectively analyzed to produce a three-dimensional wind field. The domain of interest had a horizontal dimension of 10 by 10 km centered on the microburst. Vertical velocities were computed by integrating the anelastic continuity equation downward from the storm's top with variational adjustment. Subsequently, fields of deviation perturbation pressure, density, and virtual temperature were retrieved from a detailed wind field using the three momentum equations.Results show that the microburst being investigated is embedded within a high-reflectivity region associated with heavy precipitation. A strong downflow impinges on the surface producing a stagnation mesohigh inside the microburst. This mesohigh is accompanied by mesolows in the strongest outflow regions, forming a pronounced horizontal perturbation pressure gradient outward from the high-pressure center. The outflow regions extend from the surface to approximately 1 km AGL with maximum divergence in excess of 10 –2 s–1. Inclusion of friction in the pressure equation improves pressure recovery at all levels, especially in the atmospheric boundary layer (ABL). The microburst occurrence in the ABL enhances eddy transfer of momentum. Magnitudes of eddy viscosity and eddy stresses increase as a result of the microburst.  相似文献   

18.
A series of idealized model simulations are analyzed to determine the sensitivity of model results to different configurations of the lateral boundary conditions (LBCs) in simulating mesoscale shallow convection over hilly terrain, In the simulations with steady thermal forcing at the model surface, a radiation condition at both boundaries is the best choice under high wind conditions, and the best results are produced when both the normal velocities and the temperature are treated with the radiation scheme in which the phase speed is the same for different variables, When the background wind speed is reasonably small, the LBC configuration with either the radiation or the zero gradient condition at both boundaries tends to make the numerical solution unstable. The choice of a constant condition at the inflow boundary and a radiation outflow boundary condition is appropriate in most cases, In the simulations with diurnal thermal forcing at the model surface, different LBC schemes are combined together to reduce spurious signals induced by the outflow boundary, A specification inflow boundary condition, in which the velocity fields at the inflow boundary are provided using the time-dependent results of a simulation with periodic LBCs over a flat domain, is tested and the results indicate that the specification condition at the inflow boundary makes it possible to use a smaller model domain to obtain reasonable results. The model horizontal domain length should be greater than a critical length, which depends on the domain depth H and the angle between gravity wave phase lines and the vertical, An estimate of minimum domain length is given by [(H-zi)/πU]√N^2L2x-4π^2u^2, where N and U are the background stability and wind speed,respectively, Lx is the typical gravity wavelength scale, and zi is the convective boundary layer (CBL)depth.  相似文献   

19.
Boundary-layer wind structure in a landfalling tropical cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   

20.
Approximate analytical solution of the coupled momentum and heat transfer equations are obtained, using an integral method, for natural convection boundary layers which are produced by a step change of surface temperature. The accuracy of the laminar solution is shown to be good, especially at high Prandtl Number (Pr). The corresponding solutions for the turbulent fluid yield a model of a boundary layer in which the horizontal flow strengthens downstream and is fed by downward motion from above. We call this system, which could possibly simulate the initiation of a sea breeze circulation, a subsidence front. Interesting properties of the solution include the control of the boundary-layer development by the product (PrS), whereS is the slope of the boundary layer, and also the generation of log-linear velocity and temperature profiles by heat flux divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号