首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral moraines constructed along west to east sloping outlet glaciers from mountain centred, pre-last glacial maximum (LGM) ice fields of limited extent remain largely preserved in the northern Swedish landscape despite overriding by continental ice sheets, most recently during the last glacial. From field evidence, including geomorphological relationships and a detailed weathering profile including a buried soil, we have identified seven such lateral moraines that were overridden by the expansion and growth of the Fennoscandian ice sheet. Cosmogenic 10Be and 26Al exposure ages of 19 boulders from the crests of these moraines, combined with the field evidence, are correlated to episodes of moraine stabilisation, Pleistocene surface weathering, and glacial overriding. The last deglaciation event dominates the exposure ages, with 10Be and 26Al data derived from 15 moraine boulders indicating regional deglaciation 9600 ± 200 yr ago. This is the most robust numerical age for the final deglaciation of the Fennoscandian ice sheet. The older apparent exposure ages of the remaining boulders (14,600-26,400 yr) can be explained by cosmogenic nuclide inheritance from previous exposure of the moraine crests during the last glacial cycle. Their potential exposure history, based on local glacial chronologies, indicates that the current moraine morphologies formed at the latest during marine oxygen isotope stage 5. Although numerous deglaciation ages were obtained, this study demonstrates that numerical ages need to be treated with caution and assessed in light of the geomorphological evidence indicating moraines are not necessarily formed by the event that dominates the cosmogenic nuclide data.  相似文献   

2.
The age of the Rockland tephra, which includes an ash-flow tuff south and west of Lassen Peak in northern California and a widespread ash-fall deposit that produced a distinct stratigraphic marker in western North America, is constrained to 565,000 to 610,000 yr by 40Ar/39Ar and U-Pb dating. 40Ar/39Ar ages on plagioclase from pumice in the Rockland have a weighted mean age of 609,000 ± 7000 yr. Isotopic ages of spots on individual zircon crystals, analyzed by the SHRIMP-RG ion microprobe, range from ∼500,000 to ∼800,000 yr; a subpopulation representing crystal rims yielded a weighted-mean age of 573,000 ± 19,000 yr. Overall stratigraphic constraints on the age are provided by two volcanic units, including the underlying tephra of the Lava Creek Tuff erupted within Yellowstone National Park that has an age of 639,000 ± 2000 yr. The basaltic andesite of Hootman Ranch stratigraphically overlies the Rockland in the Lassen Peak area and has 40Ar/39Ar ages of 565,000 ± 29,000 and 565,000 ± 12,000 yr for plagioclase and groundmass, respectively. Identification of Rockland tephra in ODP core 1018 offshore of central California is an important stratigraphic age that also constrains the eruption age to between 580,000 and 600,000 yr.  相似文献   

3.
We present the first application of cross-dating (Th/U measured by thermo-ionization mass spectrometry (TIMS) and 14C measured by accelerator mass spectrometry (AMS)) of calcite covering prehistoric paintings. Th/U age estimates of cave drapery range from 9800 to 27,300 yr B.P. while conventional 14C age is estimated between 9900 and 7610 yr B.P. depending on the dead carbon correction. The age discrepancy is attributed to a disturbance of Th/U and/or 14C geochemical systems, showing the limits of the geochronological approach applied to this kind of material. For the Th/U system, the poor consistency of U data (U content, 234U/238U activity ratios) and apparent ages argue for open system conditions. For 14C system, variation of the dead carbon fraction (dcf) and a possible mixing of successive generations of calcite could account for age discrepancy. Nevertheless, one sample shows concordant ages for the two methods. Compatible ages through corrections for open system conditions are assumed for other samples. Then, the cross-dating suggests 9900 yr as the minimum age of the piece of drapery; the underlying painting must be older. This study of rock art demonstrates the presence of a Pleistocene population before 9900 yr in the southeast of Borneo, whereas previously the only population in evidence in this area was of Austronesian type from ∼5000 to 6000 yrs ago.  相似文献   

4.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

5.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

6.
Cosmogenic radionuclide (CRN) exposure ages provide evidence for the limited extent of last glacial maximum glaciers in the Tanggula Shan, central Tibetan Plateau. The most extensive advances occurred during or before marine oxygen isotope stage 6 (MIS-6) based on previous CRN exposure ages. The second most extensive advance occurred during or before MIS-4 based on previous ages and new ages of 41,400 ± 4300, and 66,800 ± 7100 10Be yr. A MIS-2 advance of less than 3 km occurred between 31,900 ± 3400 and 16,000 ± 1700 10Be yr.  相似文献   

7.
At Lago Buenos Aires, Argentina, 10Be, 26Al, and 40Ar/39Ar ages range from 190,000 to 109,000 yr for two moraines deposited prior to the last glaciation, 23,000–16,000 yr ago. Two approaches, maximum boulder ages assuming no erosion, and the average age of all boulders and an erosion rate of 1.4 mm/103 yr, both yield a common estimate age of 150,000–140,000 yr for the two moraines. The erosion rate estimate derives from 10Be and 26Al concentrations in old erratics, deposited on moraines that are >760,000 yr old on the basis of interbedded 40Ar/39Ar dated lavas. The new cosmogenic ages indicate that a major glaciation during marine oxygen isotope stage 6 occurred in the mid-latitude Andes. The next five youngest moraines correspond to stage 2. There is no preserved record of a glacial advance during stage 4. The distribution of dated boulders and their ages suggest that at least one major glaciation occurred between 760,000 and >200,000 yr ago. The mid-latitude Patagonian glacial record, which is well preserved because of low erosion rates, indicates that during the last two glacial cycles major glaciations in the southern Andes have been in phase with growth and decay of Northern Hemisphere ice sheets, especially at the 100,000 yr periodicity. Thus, glacial maxima are global in nature and are ultimately paced by small changes in Northern Hemisphere insolation.  相似文献   

8.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

9.
Variability of atmospheric 14C content often complicates radiocarbon-based chronologies; however, specific features such as periods of constant 14C age or steep changes in radiocarbon ages can be useful stratigraphic markers. The Younger Dryas event in the Northern Hemisphere is one of those periods, showing conspicuous 14C wiggles. Although the origin of those variations is not fully understood, we can make practical use of them and determine: (i) whether the Younger Dryas was global in extent; if so, (ii) were the initial cooling and the final warming synchronous worldwide; and (iii) what are the implications of these similarities/differences? Here we report high-resolution AMS 14C chronologies from the mid-latitudes of South America that pinpoint a cool episode between 11,400 and 10,20014C yr B.P. The onset of the final cool episode of the Late Glacial in the southern mid-latitudes, i.e., the Huelmo/Mascardi Cold Reversal, preceded the onset of the Younger Dryas cold event by ∼550 calendar years. Both events ended during a radiocarbon-age plateau at ∼10,20014C yr B.P. Thus, the Huelmo/Mascardi Cold Reversal encompasses the Younger Dryas, as well as a couple of short-term cool/warm oscillations that immediately preceded its onset in the North Atlantic region.  相似文献   

10.
Surface exposure dating has become a helpful tool for establishing numeric glacial chronologies, particularly in arid high-mountain regions where radiocarbon dating is challenging due to limited availability of organic material. This study presents 13 new 10Be surface exposure ages from the Kitschi-Kurumdu Valley in the At Bashi Range, Tien Shan. Three moraines were dated to ~ 15, 21 and > 56 ka, respectively, and corroborate previous findings that glacial extents in the Tien Shan during Marine Oxygen Isotope Stage (MIS) 2 were limited compared to MIS 4. This likely documents increasingly arid conditions in Central Asia during the last glacial cycle. Morphological evidence in the Kitschi-Kurumdu Valley and a detailed review of existing numeric glacial chronologies from the Tien Shan indicate that remnants of the penultimate glaciation (MIS 6) are preserved, whereas evidence for MIS 5 glacier advances remains equivocal. Reviewed and recalculated exposure ages from the Pamir mountains, on the other hand, reveal extensive MIS 5 glacial extents that may indicate increased monsoonal precipitation. The preservation of MIS 3 moraines in the Tien Shan and the southern Pamir does not require any monsoonal influence and can be explained alternatively with increased precipitation via the westerlies.  相似文献   

11.
Thermoluminescence (TL) and infrared-stimulated luminescence (IRSL) sediment-dating methods have been applied to paleosol- and tephra-bearing loess sequences younger than marine oxygen isotope stage (MIS) 7 at three important sites. TL ages indicate the development of significant paleosols ∼75,000 and ∼30,000 yr ago in the loess sequence at the Gold Hill site. Relatively minor soil development occurred ∼70,000 and ∼48,000 yr ago. Like the ∼75,000-yr-old soil, the 30,000-yr-old soil is apparently of global extent, and consistent in timing with inferred warm intervals elsewhere (e.g., Greenland, Europe, western and central China). At Birch Hill, replicate TL dating of primary loess combined with two earlier TL results from the same site, and with an earlier mean fission-track-glass-shard age of 140,000 ± 10,000 yr for the associated Old Crow tephra, yield a more precise numeric age of 142,300 ± 6600 yr for this Alaska/Yukon chronostratigraphic marker ash bed. Three of the TL ages at the Halfway House site are difficult to interpret, but combined with other evidence, they indicate: (1) the upper 5-6 m of loess from Halfway House is not part of the Gold Hill Loess (equivalent to pre-MIS 5 age) as long thought by T.L. Péwé, but rather is much younger; (2) the regionally significant variegated tephra, found in the Fairbanks and Klondike areas and previously thought to be older than MIS 5, has an age of 77,800 ± 4100 yr (late MIS 5).  相似文献   

12.
Electron spin resonance (ESR) and 230Th/234U ages of speleothem samples collected from karstic caves located around 3000 m elevation in the Alada?lar Mountain Range (AMR), south-central Turkey, were determined in order to provide new insight and information regarding late Pleistocene climate. ESR ages were validated with the 230Th/234U ages of test samples. The ESR ages of 21 different layers of six speleothem samples were found to range mostly between about 59 and 4 ka, which cover the Marine Oxygen Isotope Stages (MIS) MIS 3 to MIS 1. Among all, only six layers appear to have deposited during MIS 8 and 5. Most of the samples dated were deposited during the late glacial stage (MIS 2). It appears that a cooler climate with a perennial and steady recharge was more conducive to speleothem development rather than a warmer climate with seasonal recharge in the AMR during the late Quaternary. This argument supports previous findings that suggest a two -fold increase in last glacial maximum mean precipitation in Turkey with respect to the present value.  相似文献   

13.
Cosmic ray exposure ages of Rumuruti chondrites from North Africa   总被引:1,自引:0,他引:1  
We analyzed noble gases and determined 3He, 21Ne, and 38Ar cosmic ray exposure ages (CREAs) of Rumuruti chondrites from North West Africa (NWA) to rule on potential pairings and/or source pairings of North Africa R chondrite samples. The 21Ne exposure ages range between 10 and 74 Ma, with NWA 2897 and 1668 having the highest known exposure ages among R chondrites. We also include other R chondrites from North Africa (Schultz et al., 2005) and, based on their noble gas characteristics and their 21Ne CREAs, propose pairings of the following samples: NWA 2198, 5069, 755, 4615, 845, 851, 978, 1471, and possibly DaG 013 belonging to one fall with a CREA of ∼10 Ma, and NWA 753, 4360, 4419, 5606, 1472, 1476, 1477, 1478, and 1566 representing one fall with a CREA of ∼14 Ma. NWA 2821, 2503, 2289, 3364, 3146, 4619, 4392, 3098, and 2446 seem to belong to one single fall with a CREA of ∼20 Ma, and NWA 2897 and 1668 seem to be paired and show a common CREA of ∼66 Ma. Overall, all R chondrite samples from North Africa analyzed for noble gases so far represent ∼16 individual falls. Comparing falls from North Africa to literature CREAs of R chondrites worldwide, it seems possible that a significant number of all R chondrite falls studied for noble gases were ejected from the R chondrite parent body during one large collisional event between 15 and 25 Ma ago. However, the database is still too small to draw definitive conclusions. The large portion of brecciated R chondrites in collections suggests severe impact brecciation of the R chondrite parent body.  相似文献   

14.
Luminescence geochronology, especially infrared stimulated luminescence analyses on marsh mud, shows that a relatively deep lake reached its peak (1340 m above sea level) in the Bonneville basin 59,000±5000 yr ago. The age is consistent with nonfinite 14C ages and with amino acid geochronology on ostracodes. The Cutler Dam Alloformation was deposited during this lake cycle, which, like the subsequent Bonneville lake cycle, appears to have reached its maximum highstand following the peak of a global glacial stage (marine oxygen-isotope stage 4) but at a time when other records from North America show evidence for cold climate and expanded glacier ice.  相似文献   

15.
The 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is 40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last 15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.  相似文献   

16.
Radiocarbon and thermoluminescence (TL) age-determinations have been obtained for a large Pleistocene alluvial terrace on the Nepean River near Sydney, New South Wales, Australia. The deposit was laid down by a braided river system prior to the last glacial maximum. Six thoroughly pretreated samples of charcoal and degraded wood buried within gravels at the base of the terrace yielded apparent 14C ages of 37,000–42,000 yr B.P. These compare favorably with four TL determinations that gave apparent ages of 41,000–47,000 yr B.P. for the same deposit. Adjustment of the 14C ages to take geomagnetic effects into account further improves the correlation between these two independent dating techniques. In addition, 14C and TL correctly identified a reworked portion of the fine-grained alluvial overburden as being substantially younger than the main body of the terrace. These results augur well for the usefulness of TL age determinations of certain alluvial deposits.  相似文献   

17.
Boulder Mountain, located in South Central Utah, is one of several mountain ranges on the Colorado Plateau that was glaciated during the late Pleistocene. Using 3He exposure-age dating (corrected for non-cosmogenic 3He with shielded samples), we determined 3He exposure-ages for boulders from the most well-preserved moraines in the Fish Creek drainage of Boulder Mountain. 3He exposure-ages indicate a last glacial maximum (LGM) advance ∼23,100 ± 1300 to 20,000 ± 1400 yr ago and a later and smaller advance ∼16,800 ± 500 to 15,200 ± 500 yr ago. This chronology is very similar to other cosmogenic glacial chronologies from the Western U.S. and suggests that the timing of glacial advance and retreat on the Colorado Plateau was generally in phase with the rest of the Western U.S. during the late Pleistocene.  相似文献   

18.
Potassium-Ar and Rb-Sr dating of minerals was fundamental in early efforts to date magmatic and metamorphic processes and paved the way for geochronology to become an important discipline within the earth sciences. Although K-Ar and, in particular, 40Ar/39Ar dating of micas is still widely applied, Rb-Sr dating of micas has declined in use, even though numerous studies demonstrated that tri-octahedral mica yields geologically realistic, and more reliable and reproducible Rb-Sr ages than the K-Ar or 40Ar/39Ar system. Moreover, a reduction of uncertainties typically reported for Rb-Sr ages (ca. 1%) can now be achieved by application of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) rubidium isotope dilution measurements (<0.3%). Replicate Rb-Sr biotite ages from the Oslo rift, Norway, yield an external reproducibility of ±0.3% (n=4) and an analytical error of ±0.8 Ma for individual ages that vary between 276.9 and 275.5 Ma. Conventional thermal ionisation mass spectrometry (TIMS) Rb analysis on the same mineral separates yields ages between 276.1 and 271.7 Ma, three times the spread compared to Rb MC-ICPMS data. Biotite and phlogopite from the central Nagssugtoqidian orogen, West Greenland, yield 40Ar/39Ar plateau ages (ca. 1700 Ma) with a spread of ±150 Ma, while Rb-Sr ages on either biotite or phlogopite separates have a much narrower range of ±10 Ma. This comparison of Rb-Sr and 40Ar/39Ar ages demonstrates the robustness of the Rb-Sr system in tri-octahedral micas and cautions against the sole use of 40Ar/39Ar tri-octahedral mica ages to date geological events. Analytical errors of 16 Ma for these Rb-Sr mica ages determined by TIMS are reduced to <±5 Ma when the Rb concentration is determined by MC-ICPMS. All the TIMS and MC-ICPMS data from the Nagssugtoqidian orogen agree within assigned analytical uncertainties. However, high precision Rb-Sr dating by MC-ICPMS can resolve geological information obscured by TIMS age determinations. TIMS data for seven phlogopite samples form an isochron age of 1645±6 Ma, and thus, no differentiation in age between the different samples can be made. In contrast, MC-ICPMS Rb measurements on the same samples reveal two distinct populations with ages of 1633±3 or 1652±5 Ma.Combining the mica Rb-Sr geochronological data with the well-constrained thermal history of this ancient orogen, we estimate the closure temperature of the Rb-Sr system in 1-2 mm slowly cooled phlogopite crystals, occurring in a matrix of calcite and plagioclase to be ∼435 °C, and at least 50 °C above that of biotite.  相似文献   

19.
Moraines on Schnells Ridge, southwest Tasmania, have been dated using in situ 10Be. An age of 19,400 ± 600 yr is indicated for the well-preserved innermost moraine from consistent measurements on four large quartzite boulders. This corresponds closely with exposure ages reported by T.T. Barrows et al. (2002, Quaternary Science Reviews 21, 159–173) for Last Glacial Maximum glacial features farther north in Tasmania and southeast Australia. In contrast, ages between 39,000 and 141,000 yr were obtained from a series of boulders on a more extensive outer moraine, indicating that this has had a more complex history.  相似文献   

20.
Computer models suggest that the Holocene Optimum for East Asian summer monsoon precipitation occurred at different times in different regions of China. Previous studies indicate that this time-transgressive Holocene Optimum should have been experienced about 3000 yr ago in southern China. In this study we describe a section which allows us to test this timing directly. We have closely examined high-resolution eutrophic peat/mud sequences covering the past 18,000 cal yr at Dahu, Jiangxi, on the southern boundary of the mid subtropical zone in China. Late Pleistocene successions in the Dahu record indicate cooler and much wetter conditions relative to synchronous events in north-central China. Our results indicate that the Holocene Optimum occurred between ca. 10,000 and 6000 cal yr ago in southern China, consistent with the global pattern. Conditions were relatively dry and cold from 6000 to 4000 cal yr ago. Our data also support the conclusion that the last deglaciation to early Holocene in the south was much wetter, resulting in the formation of dense broad-leaved forests, which could have acted to moderate land temperature ∼10,000 to 6000 cal yr ago, yielding a stable early-Holocene climate. After 6000 cal yr, forest reduction led to unstable land temperatures, and possibly to a northerly shift of the subtropical high-pressure system. Whatever the mechanism, these changes resulted in decreased precipitation between 6000 and 4000 cal yr B.P. in southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号