首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
High-resolution macroscopic charcoal analysis was used to reconstruct a 14,300-year-long fire history record from the lower Columbia River Valley in southwestern Washington, which was compared to a previous vegetation reconstruction for the site. In the late-glacial period (ca. 14,300-13,100 cal yr BP), Pinus/Picea-dominated parkland supported little to no fire activity. From the late-glacial to the early Holocene (ca. 13,100-10,800 cal yr BP), Pseudotsuga/Abies-dominated forest featured more frequent fire episodes that burned mostly woody vegetation. In the early to middle Holocene (ca. 10,800-5200 cal yr BP), Quercus-dominated savanna was associated with frequent fire episodes of low-to-moderate severity, with an increased herbaceous (i.e., grass) charcoal content. From the middle to late Holocene (ca. 5200 cal yr BP to present), forest dominated by Pseudotsuga, Thuja-type, and Tsuga heterophylla supported less frequent, but mostly large or high-severity fire episodes. Fire episodes were least frequent, but were largest or most severe, after ca. 2500 cal yr BP. The fire history at Battle Ground Lake was apparently driven by climate, directly through the length and severity of the fire season, and indirectly through climate-driven vegetation shifts, which affected available fuel biomass.  相似文献   

2.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

3.
Pollen data from two sites provide information on the postglacial vegetation and climate history of the Cascade Range. Indian Prairie in the western Cascade Range was colonized by subalpine forests of Pinus, Picea, and Tsuga and open meadows prior to ca. 12,400 14C yr B.P. The treeline lay 500 to 1000 m below its modern elevation and conditions were cooler than at present. From ca. 12,400 to ca. 9950 14C yr B.P. Abies became important and the forest resembled that presently found at middle elevations in the western Cascade Range. The pollen record implies a rise in treeline and warmer conditions than before. From ca. 10,000 to 4000-4500 14C yr B.P., conditions that were warmer and effectively drier than today led to the establishment of a closed forest composed of Pseudotsuga , Abies, and, at lower elevations, Quercus and Corylus . During this period, Gold Lake Bog in the High Cascades was surrounded by closed forest of Pinus and Abies. The early-Holocene pollen assemblages at both Indian Prairie and Gold Lake Bog lack modern analogues, and it is likely that greater-than-present summer radiation fostered unique climatic conditions and vegetation associations at middle and high elevations. In the late Holocene, beginning ca. 4000-4500 14C yr B.P., cooler and more humid conditions prevailed and the modern vegetation was established. A comparison of these sites with others in the Pacific Northwest suggests that major patterns of vegetational change at individual sites were a response to large-scale changes in the climate system that affected the entire region.  相似文献   

4.
We synthesize pollen spectra from eleven dated stratigraphic sections from central and northern Yukon. Palaeomagnetic and tephra dating indicates the earliest assemblages, representing closed canopy Pinus and Picea forest, are middle-late Pliocene age. More open forest conditions, indicated by increased Poaceae and with evidence of permafrost, are dated at ca 3 Ma. While Pinus pollen is abundant at 3 Ma, it is reduced in records after 2.6 Ma, and subsequent Pleistocene interglacial forest records are repeatedly dominated by Picea, along with Alnus and small but significant amounts of Abies. Surface sample comparisons indicate that Abies was more widespread and abundant in past interglaciations than at present and that Middle-Pleistocene PiceaAbies forest grew in the northern Yukon Porcupine Basin, 500 km beyond modern Abies limits. In contrast, Pinus, which occurs today in southern and central Yukon, was not a significant component of these Pleistocene interglacial forests. Late-Holocene pollen assemblages with rare Abies and high Pinus are the most distinct in the past 2.6 Ma. Possible factors driving Holocene difference are paleoclimate, paludification, changes in megafaunal herbivory and an unusual fire regime. Anthropogenic burning is a factor unique to the Holocene, and if it is shown to be important in this case, it would challenge our notion of what constitutes boreal wilderness.  相似文献   

5.
Pollen records in the Kootenai and Fisher River drainages in western Montana reveal a fivezone sequence of Holocene vegetation change. Deposition of Glacier Peak Ash-Layer G (ca. 10,540 ± 660 yr B.P.) in the lowermost sediments (clay intermixed with pebbles) at Tepee Lake gives a minimum date for the initiation of sedimentation. Initial vegetation on the newly deglaciated terrain was dominated by Pinus (probably white bark pine) with small amounts of Gramineae, Picea and Abies, reflecting a relatively cool, moist macroclimate. Two vegetation units appear to contribute to Pollen Zone II (ca. 11,000–7100 yr B.P.): arboreal communities with pines, along with Pseudotsuga or Larix, or both, and treeless vegetation dominated by Artemisia. Pollen Zone II represents an overall warmer macroclimate than occurred upon ice withdrawal. After ca. 7100 yr B.P. (Pollen Zone III) diploxylon pines became a major pollen contributor near both Tepee Lake and McKillop Creek Pond, indicating an expansion of xerophytic forest (P. contorta and P. ponderosa) along with an increase in the prominence of Pseudotsuga menziesii or Larix occidentalis, or both. Artemisia briefly expanded coverage near Tepee Lake concomitant with the Mazama ashfall ca. 6700 yr B.P. A short-term climatic trend with more available water began after ca. 4000 yr B.P. as Abies (probably A. grandis) along with Picea engelmannii became a more regular component of the forest surrounding both sites. Emergence of the modern macroclimate is indicated primarily with the first regular appearance of Tsuga heterophylla in the pollen record by ca. 2700 yr B.P., synchronous with the development of western hemlock forest within the same latitudes in northern Idaho and northeastern Washington.  相似文献   

6.
A high-resolution pollen record from Path Lake in Port Joli Harbour, Nova Scotia, Canada, provides a paleo-ecological perspective on Holocene climate and vegetation variability within the context of local archaeological research. Pollen assemblages in the early Holocene reflect a post-glacial forest dominated by Pinus, Tsuga, Betula and Quercus. During this time, a lower frequency of radiocarbon dated cultural material suggests lower human settlement intensity. Shallow water aquatic (Isoetes) and wetland (Alnus, Sphagnum) taxa increased after 3400 cal yr BP in response to a transition towards wetter climatic conditions. Culturally significant periods, where settlement intensity increased in the Maritimes and Maine, coincide with maximum values of reconstructed total annual precipitation, suggesting that environmental conditions may have influenced prehistoric human activity. European settlement, after 350 cal yr BP, was marked by a rise in Ambrosia. The impact of anthropogenic fire disturbances on the landscape was evidenced by peak charcoal accumulations after European settlement.  相似文献   

7.
High-resolution charcoal and pollen analyses were used to reconstruct a 12,000-yr-long fire and vegetation history of the Tumalo Lake watershed and to examine the short-term effects that tephra deposition have on forest composition and fire regime. The record suggests that, from 12,000 to 9200 cal yr BP, the watershed was dominated by an open Pinus forest with Artemisia as a common understory species. Fire episodes occurred on average every 115 yr. Beginning around 9200 cal yr BP, and continuing to the present, Abies became more common while Artemisia declined, suggesting the development of a closed forest structure and a decrease in the frequency of fire episodes, occurring on average every 160 yr. High-resolution pollen analyses before and after the emplacement of three distinct tephra deposits in the watershed suggest that nonarboreal species were most affected by tephra events and that recovery of the vegetation community to previous conditions took between 40 and 100 yr. Changes in forest composition were not associated with tephra depositional events or changes in fire-episode frequency, implying that the regional climate is the more important control on long-term forest composition and structure of the vegetation in the Cascade Range.  相似文献   

8.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

9.
Holocene fire disturbance and vegetation history were reconstructed using macroscopic charcoal and pollen accumulation rates from two lake sediment records (Holtjärnen and Klotjärnen) collected in the boreal forest of central Sweden. The records were used to examine the potential drivers associated with changes in fire regime. Climate, vegetation and human activity were all identified as factors variously influencing the fire regime. In the early Holocene, near bicentennial fire return intervals were regionally widespread, suggesting that fire disturbance was largely regulated by climate at that time. In the mid‐ and late Holocene, vegetation exerted an important control on the fire regime. During the mid‐Holocene, the expansion of thermophilous broadleaf vegetation offset the influence of warmer climate by altering the local microclimate and by changing the structure and flammability of the available fuels. During the transition to the late Holocene, thermophilous vegetation decreased in abundance and Pinus increased, resulting in a more flammable forest even though the climate was cooling and moistening. Fire disturbance correspondingly increased. The modern boreal forest was established in the late Holocene as Picea expanded regionally as the climate cooled, moistened, and became increasingly continental. Although no change in the frequency of fire was apparent at this time, increased stand densities likely facilitated greater fuel consumption in subsequent fires. Within the last millennium, human action markedly modified the forested landscape, altering the fire regime.  相似文献   

10.
The objective of this study was to investigate the possible links between regional climate, fire and vegetation at the small spatial scale during the early and mid Holocene in southern Sweden using pollen, plant macrofossil and charcoal records from a small bog. The fire history was compared with climate reconstructions inferred from various proxy records in the study region. High fire activity is related to dry and warm climate around 8550, 7600, 5500–5100 and 4500 cal. a BC. Low fire activity ca. 6500–6000 and 4750 BC may correspond to the widespread ‘8.2 k event’ (ca. 6200 BC) recorded across the North Atlantic region, and a later, brief period of increased precipitation, respectively. The decrease in broadleaved trees culminating ca. 6500–6000 BC correlates with the ‘8.2 k event’. A long mid Holocene period with low fire activity (ca. 4350–1000 BC) agrees with the pattern emerging for Europe from the global charcoal database, and may correspond to generally wetter and cooler conditions. High fire activity ca. 8550 BC probably triggered the local establishment of Corylus. Warmer and drier conditions (and high fire activity) ca. 7600 BC might have favoured the establishment of Alnus, Quercus and Tilia. The fire‐adapted Pinus maintained important populations throughout the early and mid Holocene. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Pollen, plant macrofossil, and charcoal records from Spruce Pond (41°14′22″N, 74°12′15″W), southeastern New York, USA dated by AMS provide details about late-glacial–early Holocene vegetation development in the Hudson Highlands from >12410 to 9750 14C yr BP. Prior to 12410 yr BP, vegetation was apparently open, dominated by herbs and shrubs (Cyperaceae, Gramineae, Tubuliflorae, Salix, Alnus, Betula), possibly with scattered trees (Picea and Pinus). However, Picea macrofossils are not found until 12410 yr BP. Development of a temperature deciduous–boreal-coniferous forest featuring Quercus, Fraxinus, Ostrya/Carpinus, Pinus, Picea, and Abies occurs between 12410 and 11140 yr BP. A return of predominantly boreal forest taxa between 11140 and 10230 yr BP is interpreted as an expression of the Younger Dryas cooling event. Holocene warming at 10230 yr BP is signalled by arrival of Pinus strobus, coincident with expansion of Quercus-dominated forest. Fire activity, as inferred from charcoal influx, appears to have increased as woodland developed after 12410 yr BP. Two charcoal influx peaks occur during Younger Dryas time. Early Holocene fire activity was relatively high but decreased for approximately 100 yr prior to the establishment of Tsuga canadensis in the forest at 9750 yr BP. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

13.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation.  相似文献   

14.
华北区第四纪植被演替与气候变化   总被引:6,自引:0,他引:6       下载免费PDF全文
周昆叔 《地质科学》1984,(2):165-172
文中华北区是指燕山、辽南一线以南、吕梁山以东、渭河谷地与准阳丘陵以北地区。该区属暖温带,即蒙古和东北寒温带、温带区域与华中和华东亚热带区域之间的过渡地带,故第四纪冰期、间冰期气候的变化,对本区的影响表现得很强烈,它引起第四纪植被的明显演替,是我国第四纪植被变化较大的两个区域之一(另一为青藏区)。  相似文献   

15.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

16.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

17.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.  相似文献   

18.
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce (Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple (Acer saccharum) and birch (Betula spp.), and rare fragments of pine (Pinus cf. strobus) and white cedar (Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.  相似文献   

19.
The paucity of low- and middle-elevation paleoecologic records in the Northern Rocky Mountains limits our ability to assess current environmental change in light of past conditions. A 10,500-yr-long vegetation, fire and climate history from Lower Decker Lake in the Sawtooth Range provides information from a new region. Initial forests dominated by pine and Douglas-fir were replaced by open Douglas-fir forest at 8420 cal yr BP, marking the onset of warmer conditions than present. Presence of closed Douglas-fir forest between 6000 and 2650 cal yr BP suggests heightened summer drought in the middle Holocene. Closed lodgepole pine forest developed at 2650 cal yr BP and fires became more frequent after 1450 cal yr BP. This shift from Douglas-fir to lodgepole pine forest was probably facilitated by a combination of cooler summers, cold winters, and more severe fires than before. Five drought episodes, including those at 8200 cal yr BP and during the Medieval Climate Anomaly, were registered by brief intervals of lodgepole pine decline, an increase in fire activity, and mistletoe infestation. The importance of a Holocene perspective when assessing the historical range of variability is illustrated by the striking difference between the modern forest and that which existed 3000 yr ago.  相似文献   

20.
Vegetation assemblages and associated disturbance regimes are spatially heterogeneous in mountain ecosystems throughout the world due to the complex terrain and strong environmental gradients. Given this complexity, numerous sites describing postglacial vegetation and fire histories are needed to adequately understand forest development and ecosystem responses to varying climate and disturbance regimes. To gain insight into long-term historical climate–fire–vegetation interactions in southeastern British Columbia, Canada, sedimentological and paleoecological analyses were performed on a sediment core recovered from a small subalpine lake. The pollen assemblages, stomata, and macroremains indicate that from 9500 to 7500 cal yr BP, Pinus-dominated forests occurred within the catchment and Alnus was also present. Climate was an important control of fire and fire frequency was highest at this time, peaking at 8 fires 1000 yr− 1, yet charcoal accumulation rates were low, indicative of low terrestrial biomass abundance. From 7500 to 4600 cal yr BP, Pinus decreased as Picea, Abies and Larix increased and fire frequencies decreased to 3–6 fires 1000 yr− 1. Since 7500 cal yr BP the fire regime varied at a millennial scale, driven by forest biomass abundance and fuel accumulation changes. Local scale (bottom-up) controls of fire increased in relative importance since at least 6000 cal yr BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号