首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The accidental torsion, caused by several sources of structural uncertainties, gets the elastic response of a building different from that computed. To take into account of these uncertainties, building codes impose the introducing in every storey of the buildings an artificial eccentricity, called accidental, as a fraction of the plan dimension. Because, according to building codes, the accidental eccentricity can mathematically be expressed as a modification of the mass matrix, it follows that each mass modifications require new dynamic analyses that could be cumbersome from a numerical point of view. This paper proposes a new combination rule to obtain in closed form the maximum responses of structures with mass modification by the response spectrum analysis (RSA) without solving any further eigenproblem. In particular, the proposed procedure, based on the application to the RSA of the interval perturbation method, leads to an extension of the classical complete quadratic combination rule to the analysis of structural systems with uncertain‐but‐bounded parameter. In particular, for structural systems with accidental eccentricity, the proposed approach allows to directly evaluate the worst condition for the structural elements with a single RSA. This very remarkable result is obtained by adopting a new modal combination rule, here called interval complete quadratic combination. Numerical results evidence a very good accuracy of the interval complete quadratic combination for single‐storey buildings as well as for the analyzed multistorey buildings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The paper deals with the topic of analyses performed according to modern code provisions, in particular Eurocode 8 (EC8) rules. Non linear static and non linear dynamic analyses of a plan irregular multi-storey r/c frame building designed according to Eurocode 2 (EC2) and EC8 provisions are carried out.The extension of the N2 method to torsionally flexible structures, as applied in previous papers, does not consider the accidental eccentricity, which is prescribed by EC8 also in the case of non linear static analysis. In this paper, three methods combining the accidental eccentricity prescribed by EC8 to the procedure which extends the N2 method to torsionally flexible structures are proposed and discussed. Each of them provides four modal response spectrum analyses (one for each model, corresponding to each position of centre of mass) and eight non linear static analyses (two signs for four models). NLSA(meth. n.2) seems to be the more reliable method of the three proposed, because it better fits absolute displacements obtained by non linear dynamic analysis.In the paper it is also observed that the value of the behaviour factor assigned by EC8 to torsionally flexible systems seems too conservative.  相似文献   

3.
This investigation is concerned with accidental torsion in buildings resulting from rotational excitation (about a vertical axis) of the building foundations as a result of spatially non-uniform ground motions. Because of this accidental torsion, the displacements and deformations in the structural elements of the building are likely to increase. This increase in response is evaluated using actual base rotational excitations derived from ground motions recorded at the base of 30 buildings during recent California earthquakes. Accidental torsion has the effect of increasing the building displacements, in the mean, by less than 5 per cent for systems that are torsionally stiff or have lateral vibration periods longer than half a second. On the other hand, short period (less than half a second) and torsionally flexible systems may experience significant increases in response due to accidental torsion. Since the dependence between this increase in response and the system parameters is complex, two simplified methods are developed for conveniently estimating this effect of accidental torsion. They are the ‘accidental eccentricity’ and the ‘response spectrum’ method. The computed accidental eccentricities are much smaller than the typical code values, 0.05bb or 0.1b, except for buildings with very long plan dimensions (b ≥ 50 m). Alternatively, by using the response spectrum method the increase in response can be estimated by computing the peak response to each base motion independently and combining the peak values using the SRSS rule.  相似文献   

4.
Response of asymmetric buildup under earthquake excitation often involves lateral vibration coupled with torsional vibration. Floor slab is, in general, assumed as rigid along the in‐plane direction. Building code provisions to account for the torsional effect in static force procedure are based on centre of rigidity or shear centre of the building. A convenient procedure is developed here to locate the centre of rigidity or shear centre, which can be implemented, using any standard building analysis software. The procedure is applicable for orthogonal as well as non‐orthogonal building systems and accounts for all possible definitions of static eccentricity to compute the design response. An irregular building is analysed to illustrate the proposed methodology. Significant variation in member force resultants is observed due to different definitions of static eccentricity. Finally, a mathematical proof is presented to substantiate the applicability of the proposed procedure to a non‐orthogonal building. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Seismic Design of Symmetric Structures for Accidental Torsion   总被引:5,自引:0,他引:5  
The paper presents an analytical estimation of the dynamic effects, caused by the shifting of the centre of mass with accidental eccentricity in symmetric structures. The approximate analytical solution proves, that even under small accidental eccentricities the symmetric structures exhibit “irregular behaviour” and the accidental torsional effects cannot be described properly by static application of torsional moments. The prescribed application rule by Eurocode 8 for multimodal analysis underestimates the accidental torsional effects up to 21% for 5% eccentricity for the structures considered in the paper. An expression for the correction of member responses is derived. It is proved by numerical simulations of the dynamic response of three-dimensional models of symmetric structures, that the proposed correction coefficient gives accurate results in cases of single-storey and multi-storey structures. It gives a convenient way for the design practice to estimate accurately the accidental torsional effects on planar and 3-D models of symmetric structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Precast concrete panels form attractive facades for steel frame buildings and are generally regarded as non-structural by structural engineers. However, panels have been found to add lateral stiffness until their capacity or that of their connections is exceeded. Consequently, the computed dynamic response based on a model of the structural framing alone may be quite different from that experienced by the actual structure. As a case study, the influence of precast concrete panels on lateral and torsional stiffness of a 25-storey building was investigated. The effect of cladding on dynamic properties and linear seismic response was explored by varying panel stiffness. Cladding stiffness was added to the bare frame model until analytical frequency values matched vibration test results. Then, using the cladding stiffness values obtained, an accidental eccentricity between centres of mass and rigidity at each floor level was imposed and linear seismic response computed. Torsional response effects were increased substantially. Finally, a modified cladding panel connection was developed based on previously-reported studies for panelized construction. The influence of the proposed connection on overall structural response was determined for different ground motion inputs.  相似文献   

8.
This paper evaluates the inelastic seismic response of torsionally unbalanced structural systems with strength distributed using elastic response spectrum analysis. The structural model is a single mass torsionally unbalanced system with lateral load resisting elements spanning in two principal directions. The element strength is distributed based on elastic response spectrum analysis and three different approaches to incorporate accidental torsion are considered: (a) without incorporating accidental torsion; (b) by applying static floor torques; (c) by shifting the location of the centre of mass. The seismic input is bidirectionally applied at the base of the model. It is shown that the inelastic responses depend strongly on the torsional stiffness of the system. For a torsionally stiff system, the torsional response leads to a decrease in the stiff edge displacement; however, for a torsionally flexible system, it tends to increase the stiff edge displacement. Using response spectrum analysis without including accidental torsion may lead to excessive additional ductility demand on the stiff edge element. With accidental torsion effect incorporated, the response spectrum analysis will give a strength distribution such that there will be no excessive additional ductility demands on the lateral load resisting elements.  相似文献   

9.
Based on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.  相似文献   

10.
To deal with earthquake-induced torsion in buildings due to some uncertain factors, difficult to account for directly in design, modern codes have introduced the so-called accidental design eccentricity (ADE). This provision has been based primarily on elastic investigations with special classes of multi-story buildings or with simplified, one-story inelastic models. In the present paper, the effectiveness of this provision is investigated using inelastic models, both of the typical one-story, 3-DOF type, and the more sophisticated MDOF, frame idealizations of the plastic hinge type. One, three and five story, realistic, frame buildings with different natural eccentricities were designed for different ADEs, including those specified by the EC8 and IBC codes. The evaluation is made using mean peak ductility factors of the edge frames as measures of their inelastic response, obtained from dynamic analyses for ten pairs of semi-artificial earthquake motions. The simplified models indicate that the accidental design eccentricity is very effective in reducing ductility demands, especially for very stiff systems. However, this is not confirmed by the more accurate and detailed plastic hinge building models, which show that designs accounting for accidental eccentricity do not exhibit any substantial reduction or better distribution of ductility demands, compared to designs in which accidental eccentricity has been entirely ignored. These findings suggest that the ADE provisions in codes, especially the more complicated ones as in the IBC, should be re-examined, by weighting their importance against the additional computational work they impose on designers. In the cases examined herein this importance can be characterized as marginal. Obviously additional studies are required, to include more building types and earthquake motions, in order to arrive at firm conclusions and recommendations for code modifications.  相似文献   

11.
An analytical and closed-form frequency response of equipment mounted on multistorey buildings subjected to horizontal ground motion is proposed. In this study, the dynamics of the equipment and the building is expressed as a state-flow graph model, in which the interaction effect between the equipment and the building is considered. Based on the graph model, the analytical results for the frequency response of the acceleration of the equipment and the internal force in the support are derived. One of the advantages of this method is that the closed-form solutions of the frequency response expressed by polynomial form will be easily examined by analytical and numerical computations without complex operation. Moreover, the dynamic of the primary and secondary systems and their dynamic interaction are expressed separately in the derived formula. Thus most of the items in the formula need not be computed repeatedly for different supports of the equipment in design. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
不对称大底板多塔楼隔震结构的地震响应分析   总被引:1,自引:0,他引:1  
党育  杜永峰 《地震学刊》2012,(4):452-458
针对不对称大底板多塔楼隔震结构体系,通过建立地震响应的动力分析简化模型,推导出不对称大底板多塔楼隔震结构体系地震作用下的运动方程。对一实际的不对称大底板多塔楼隔震结构进行地震响应仿真分析,探讨塔楼质量偏心率和塔楼质量比对结构周期比、位移比和层剪力比的影响。结果显示,不对称大底板多塔楼隔震结构扭转角主要由隔震层产生;与不隔震结构相比,不对称大底板多塔楼隔震体系的扭转角减小,可取得较好的减震效果;塔楼与底板的位置分布和质量分布会影响体系的扭转效应和减震效果,应尽量使塔楼的质心与底板质心重合,塔楼质量分布均匀,以减小结构的扭转效应,提高减震效果。  相似文献   

14.
Static torsional provisions in most seismic codes require that the lateral force at each floor level be applied at some distance from the reference centre at that floor. However, codes do not specify how to determine the locations of these centres. As a result, several different definitions of the reference centres are being used to implement the code analysis. This investigation examined how the results using various reference centres differ and which of these centres would lead to results that are in agreement with those of dynamic analysis. For this purpose three different buildings ranging form torsionally stiff to torsionally flexible were analysed. It was shown that for the class of buildings studied in this investigation that although the locations of the reference centres were quite different, the results were very similar and nearly independent of the reference centre. Comparison of results calculated from static code equivalent lateral force procedures and results from dynamic response spectrum analyses showed that the static code procedures led to design forces very close (flexible wall) or slightly conservative (stiff wall) when compared to the dynamic analysis for the torsionally stiff building. However, the static code procedures significantly underestimated the design forces of the stiff walls and significantly overestimated the design forces of the flexible walls for the torsionally flexible buildings. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
文中针对单层偏心框架结构,利用正弦行波激励研究了质量偏心率和激励频率对偏心框架结构行波扭转响应的影响规律.建立了行波激励下单层偏心框架结构的振动方程,采用相对运动法求解给出了正弦行波激励下单层偏心框架结构楼板的质心平动位移和转角位移以及楼板扭矩和柱剪力的解析解.计算了一个钢筋混凝凝土单层偏心框架结构的峰值楼板扭矩和峰值...  相似文献   

16.
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.  相似文献   

17.
In this study, a novel and enhanced soil–structure model is developed adopting the direct analysis method using FLAC 2D software to simulate the complex dynamic soil–structure interaction and treat the behaviour of both soil and structure with equal rigour simultaneously. To have a better judgment on the inelastic structural response, three types of mid-rise moment resisting building frames, including 5, 10, and 15 storey buildings are selected in conjunction with three soil types with the shear wave velocities less than 600 m/s, representing soil classes Ce, De and Ee, according to Australian Standards. The above mentioned frames have been analysed under two different boundary conditions: (i) fixed-base (no soil–structure interaction) and (ii) flexible-base (considering soil–structure interaction). The results of the analyses in terms of structural displacements and drifts for the above mentioned boundary conditions have been compared and discussed. It is concluded that considering dynamic soil–structure interaction effects in seismic design of moment resisting building frames resting on soil classes De and Ee is essential.  相似文献   

18.
In order to mitigate the effect of torsion during earthquakes, most seismic codes of the world provide design guidelines for strength distribution based on the traditional perception that element stiffness and strength are independent parameters. Recent studies have pointed out that for an important class of widely used structural elements such as reinforced concrete flexural walls, stiffness is a strength‐dependent parameter. This implies that the lateral stiffness distribution in a wall‐type system cannot be defined prior to the assignment of elements' strength. Consequently, stiffness eccentricity cannot be computed readily and the current codified torsional provisions cannot be implemented in a straightforward manner. In this study, an alternate guideline for strength distribution among lateral force resisting elements is presented. To develop such a guideline, certain issues related to the dynamic behaviour of asymmetric wall‐type systems during a damaging earthquake were examined. It is shown that both stiffness and strength eccentricity are important parameters affecting the seismic response of asymmetric wall‐type systems. In particular, results indicate that torsional effects can be minimized by using a strength distribution that results in the location of the centre of strength CV and the centre of rigidity CR on the opposite sides of the centre of mass CM. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The optimal distribution of fluid viscous dampers(FVD)in controlling the seismic response of eccentric,single-storey,moment resisting concrete structures is investigated using the previously defined center of damping constant(CDC).For this purpose,a number of structural models with different one-way stiffness and strength eccentricities are considered.Extensive nonlinear time history analyses are carried out for various arrangements of FVDs.It is shown that the arrangement of FVDs for controlling the torsional behavior due to asymmetry in the concrete structures is very dependent on the intensity of the peak ground acceleration(PGA)and the extent of the structural stiffness and strength eccentricities.The results indicate that,in the linear range of structural behavior the stiffness eccentricity es which is the main parameter in determining the location of optimal CDC,is found to be less or smaller than the optimal damping constant eccentricity e*d,i.e.,|e*d| |es|.But,in the nonlinear range of structural behavior where the strength eccentricity er is the dominant factor in determining the location of optimal CDC,|e*d| |er|.It is also concluded that for the majority of the plan-asymmetric,concrete structures considered in this study with er ≠ 0,the optimal CDC approaches the center of mass as er decreases.  相似文献   

20.
The achievement of adequate performance objectives for buildings under increasing seismic intensities is not only related to the performance of structural members but also to the behavior of nonstructural elements. The need to properly design nonstructural elements for earthquakes has been largely demonstrated in the last few years and has become an important objective within the earthquake engineering community. A crucial aspect in the proper design of nonstructural elements is the definition of the seismic demand in terms of both absolute acceleration and relative displacement floor response spectra. In the first part of this study, relative displacement and absolute acceleration floor response spectra were computed for four reinforced concrete moment-resisting archetype frames via dynamic time-history analyses and were compared with floor response spectra predicted by means of two recent simplified methodologies available in the literature. It was observed that one of the existing methodologies is generally unable to predict consistent absolute acceleration and relative displacement floor response spectra. An improved procedure is developed for estimating consistent floor response spectra for building structures subjected to low and medium-high seismic intensities. This new procedure improves the predictions of a relative displacement floor response spectrum by constraining its ordinates at long nonstructural periods to the expected peak absolute displacement of the floor. The resulting acceleration and relative displacement response spectra are then consistently related by the well-known pseudo-spectral relationship over the entire nonstructural period range. The effectiveness of the proposed methodology was appraised against floor response spectra computed from nonlinear time-history analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号