首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Normalization of a perturbed elliptic oscillator, when executed in Lissajous variables, amounts to averaging over the elliptic anomaly. The reduced Lissajous variables constitute a system of cylindrical coordinates over the orbital spheres of constant energy, but the pole-like singularities are removed by reverting to the subjacent Hopf coordinates. The two-parameter coupling that is a polynomial of degree four admitting the symmetries of the square is studied in detail. It is shown that the normalized elliptic oscillator in that case behaves everywhere in the parameter plane like a rigid body in free rotation about a fixed point, and that it passes through butterfly bifurcations wherever its phase flow admits non isolated equilibria.  相似文献   

2.
3.
This paper concerns the dynamics of a rigid body of finite extent moving under the influence of a central gravitational field. A principal motivation behind this paper is to reveal the hamiltonian structure of the n-body problem for masses of finite extent and to understand the approximation inherent to modeling the system as the motion of point masses. To this end, explicit account is taken of effects arising because of the finite extent of the moving body. In the spirit of Arnold and Smale, exact models of spin-orbit coupling are formulated, with particular attention given to the underlying Lie group framework. Hamiltonian structures associated with such models are carefully constructed and shown to benon-canonical. Special motions, namely relative equilibria, are investigated in detail and the notion of anon-great circle relative equilibrium is introduced. Non-great circle motions cannot arise in the point mass model. In our analysis, a variational characterization of relative equilibria is found to be very useful. Thereduced hamiltonian formulation introduced in this paper suggests a systematic approach to approximation of the underlying dynamics based on series expansion of the reduced hamiltonian. The latter part of the paper is concerned with rigorous derivations of nonlinear stability results for certain families of relative equilibria. Here Arnold's energy-Casimir method and Lagrange multiplier methods prove useful. This work was supported in part by the AFOSR University Research Initiative Program under grant AFOSR-87-0073, by AFOSR grant 89-0376, and by the National Science Foundation's Engineering Research Centers Program: NSFD CDR 8803012. The work of P.S. Krishnaprasad was also supported by the Army Research Office through the Mathematical Sciences Institute of Cornell University.  相似文献   

4.
The motion of a point mass in the J 2 problem is generalized to that of a rigid body in a J 2 gravity field. The linear and nonlinear stability of the classical type of relative equilibria of the rigid body, which have been obtained in our previous paper, are studied in the framework of geometric mechanics with the second-order gravitational potential. Non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are obtained through a Poisson reduction process by means of the symmetry of the problem. The linear system matrix at the relative equilibria is given through the multiplication of the Poisson tensor and Hessian matrix of the variational Lagrangian. Based on the characteristic equation of the linear system matrix, the conditions of linear stability of the relative equilibria are obtained. The conditions of nonlinear stability of the relative equilibria are derived with the energy-Casimir method through the projected Hessian matrix of the variational Lagrangian. With the stability conditions obtained, both the linear and nonlinear stability of the relative equilibria are investigated in details in a wide range of the parameters of the gravity field and the rigid body. We find that both the zonal harmonic J 2 and the characteristic dimension of the rigid body have significant effects on the linear and nonlinear stability. Similar to the classical attitude stability in a central gravity field, the linear stability region is also consisted of two regions that are analogues of the Lagrange region and the DeBra-Delp region respectively. The nonlinear stability region is the subset of the linear stability region in the first quadrant that is the analogue of the Lagrange region. Our results are very useful for the studies on the motion of natural satellites in our solar system.  相似文献   

5.
In this paper, we study circular orbits of the J 2 problem that are confined to constant-z planes. They correspond to fixed points of the dynamics in a meridian plane. It turns out that, in the case of a prolate body, such orbits can exist that are not equatorial and branch from the equatorial one through a saddle-center bifurcation. A closed-form parametrization of these branching solutions is given and the bifurcation is studied in detail. We show both theoretically and numerically that, close to the bifurcation point, quasi-periodic orbits are created, along with two families of reversible orbits that are homoclinic to each one of them.  相似文献   

6.
Salakhutdinova  I.I. 《Solar physics》1999,188(2):377-396
We have averaged over every Carrington semi-rotation (C.s.-r.), the daily Wolf numbers (RW), total areas of sunspot groups (SA), the 10.7-cm radio flux (F 10.7), and the modulus of the mean magnetic field (|SMMF|). The fractal method of scaling the variance of time series was used to separate the regular and stochastic components. The manifestation of chaotic and stochastic properties of these components was investigated by testing with the methods of chaotic dynamics, as well as with two new methods: (1) close return maps; and (2) multivariate scaling analysis. Results: (1) by separating time series of global indices of solar activity, it is possible to identify the quasi-regular (the quasi-regularity is caused not by the absolute smoothness of the function) component on time scales longer than two years, and the irregular component on time scales shorter than two years; (2) the regular component has the properties of a nonlinear quasi-periodic oscillator; (3) the irregular component is a random one and has the properties of chromatic noise; and (4) by investigating the nonlinear connection of the solar activity indices under consideration it was found that such a connection is strong between F 10.7and RW. A nonlinear correlation between the attractors RW–|SMMF| and F 10.7–|SMMF| was also revealed.  相似文献   

7.
In this paper, the connections between orbit dynamics and rigid body dynamics are established throughout the Eulerian redundant parameters, the perturbation equations for any conic motion of artificial satellites are derived in terms of these parameters. A general recursive and stable computational algorithm is also established for the initial-value problem of the Eulerian parameters for satellites prediction in the Earth's gravitational field with axial symmetry. Applications of the algorithm are considered for the two cases of short and long term predictions. For the short-term prediction, we consider the problem of the final state prediction of some typical ballistic missiles in the geopotential model with zonal harmonic terms up to J 36, while for the long-term prediction, we consider the perturbed J 2 motion of Explorer 28 over 100 revolutions.  相似文献   

8.
Attitude dynamics of perturbed triaxial rigid bodies is a rather involved problem, due to the presence of elliptic functions even in the Euler equations for the free rotation of a triaxial rigid body. With the solution of the Euler–Poinsot problem, that will be taken as the unperturbed part, we expand the perturbation in Fourier series, which coefficients are rational functions of the Jacobian nome. These series converge very fast, and thus, with only few terms a good approximation is obtained. Once the expansion is performed, it is possible to apply to it a Lie-transformation. An application to a tri-axial rigid body moving in a Keplerian orbit is made.  相似文献   

9.
To seek nonlinear solutions of force-free magnetic fields, some symmetries or approximations are usually invoked. We consider magnetic fields lying on coordinate surfaces of an orthogonal curvilinear coordinate system. We conclude that only fields on parallel planes or spherical shells can be expressed in the form provided by Low in 1980s. These force-free fields are stable against small perturbations with rigid boundaries. Fields on cylindrical shells are also considered.  相似文献   

10.
Interaction between orbital motion and attitude libration dynamics of an arbitrary rigid body moving in a central Newtonian field is considered to second order. Advantage is taken of the decoupling between inplane-pitch and roll-yaw out-of-plane motion to restrict the motion to the orbital plane by an appropriate choice ofinitial conditions. An averaged solution to the nonlinear inplane-pitch equations whose accuracy is determined by ignoring terms of order {·G32/a 2, 2,2,G32/a 2} and higher is presented. The results show that the near-resonant motion is characterized by a periodic interchange of energy between the attitude and orbital motion.Associate Professor, Department of Aeronautics and Astronautics.  相似文献   

11.
Equations of motion, referred to as full body models, are developed to describe the dynamics of rigid bodies acting under their mutual gravitational potential. Continuous equations of motion and discrete equations of motion are derived using Hamilton’s principle. These equations are expressed in an inertial frame and in relative coordinates. The discrete equations of motion, referred to as a Lie group variational integrator, provide a geometrically exact and numerically efficient computational method for simulating full body dynamics in orbital mechanics; they are symplectic and momentum preserving, and they exhibit good energy behavior for exponentially long time periods. They are also efficient in only requiring a single evaluation of the gravity forces and moments per time step. The Lie group variational integrator also preserves the group structure without the use of local charts, reprojection, or constraints. Computational results are given for the dynamics of two rigid dumbbell bodies acting under their mutual gravity; these computational results demonstrate the superiority of the Lie group variational integrator compared with integrators that are not symplectic or do not preserve the Lie group structure.  相似文献   

12.
A specialised hybrid controller is applied to the control of a motorised space tether spin-up space coupled with an axial and a torsional oscillation phenomenon. A seven-degree-of-freedom (7-DOF) dynamic model of a motorised momentum exchange tether is used as the basis for interplanetary payload exchange in the context of control. The tether comprises a symmetrical double payload configuration, with an outrigger counter inertia and massive central facility. It is shown that including axial and torsional elasticity permits an enhanced level of performance prediction accuracy and a useful departure from the usual rigid body representations, particularly for accurate payload positioning at strategic points. A simulation with given initial condition data has been devised in a connecting programme between control code written in MATLAB and dynamics simulation code constructed within MATHEMATICA. It is shown that there is an enhanced level of spin-up control for the 7-DOF motorised momentum exchange tether system using the specialised hybrid controller.  相似文献   

13.
We consider the non-canonical Hamiltonian dynamics of a gyrostat in Newtonian interaction with n spherical rigid bodies. Using the symmetries of the system we carry out two reductions. Then, working in the reduced problem, we obtain the equations of motion, a Casimir function of the system and the equations that determine the relative equilibria. Global conditions for existence of relative equilibria are given. Besides, we give the variational characterization of these equilibria and three invariant manifolds of the problem; being calculated the equations of motion in these manifolds, which are described by means of a canonical Hamiltonian system. We give some Eulerian and Lagrangian equilibria for the four body problem with a gyrostat. Finally, certain classical problems of Celestial Mechanics are generalized.  相似文献   

14.
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the system can be reduced to a Hamiltonian system with configuration space of a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable and we find horseshoes due to the eccentricity of the orbit. In the caseI 3/I 1>4/3, we prove that the system on the sphere is also analytical nonintegrable.On leave from the Polytechnic Institute of Bucharest, Romania.  相似文献   

15.
Although analytic solutions for the attitude motion of a rigid body are available for several special cases, a comprehensive theory does not exist in the literature for the more complicated problems found in spacecraft dynamics. In the present paper, analytic solutions in complex form are derived for the attitude motion of a near-symmetric rigid body under the influence of constant body-fixed torques. The solution is very compact, which enables efficient and rapid machine computation. Numerical simulations reveal that the solution is very accurate when applied to typical spinning spacecraft problems.  相似文献   

16.
This paper discusses the dynamics of systems of point masses joined by massless rigid rods in the field of a potential force. The general form of equations of motion for such systems is obtained. The dynamics of a linear chain of mass points moving around a central body in an orbit is analysed. The non-integrability of the chain of three masses moving in a circular Kepler orbit around a central body is proven. This was achieved thanks to an analysis of variational equations along two particular solutions and an investigation of their differential Galois groups.  相似文献   

17.
We have studied a set of equations with nonlinear and nonadiabatic terms which describes a simple oscillator. The equations have only one fixed point located at the origin. It is found that the oscillator shows the sequence of the period-doubling for the change of a parameter and results in chaotic oscillation. We illustrated the behaviour of the oscillator for several set of parameters and showed that the equations of the oscillator can be reduced to the one-zone model of stellar pulsation with simple nonlinear terms. It is suggested that the stellar irregular variability is resulted from the chaotic motion due to the nonlinear effect.  相似文献   

18.
The Sun is not a rigid body and it is well known that its surface rotation is differential, the polar regions rotating substantially slower than the equator. This differential rotation has been demonstrated by helioseismology to continue down to the base of the convective zone, below which it becomes closer to a rigid body rotation. Far deeper, inside the energy generating core, the rotation has generally been assumed to be much faster, keeping memory of the presumably high speed of the young Sun. However, several recent results of helioseismology have decreased this likelihood more and more, so that the core rotation could be suspected to be only marginally, or even not at all faster than the envelope. Certain results would even imply a core rotation slower than the envelope, an interesting but unlikely possibility. We present here a complete analysis of the rotational splitting of the low degree modes measured in three different time series obtained in 1990, 1991, and 1992 by the IRIS full-disk network. With a time of integration slightly longer than 4 months, the splitting has been measured by 4 different global methods on 42 doublets of l = 1, 35 triplets of l = 2, and 30 quadruplets of l = 3. With a high level of confidence, our result is consistent with a rigid solar core rotation.  相似文献   

19.
The computation of periodic orbits of nonlinear mappings or dynamical systems can be achieved by applying a root-finding method. To determine a periodic solution, an initial guess should be located within a proper area of the mapping or a surface of section of the phase space of the dynamical system. In the case of Newton or Newton-like methods these areas are the basins of convergence corresponding to the considered solution. When several solutions of the same period exist in a particular region, then the deflation technique is suitable for the calculation of all these solutions. This technique is applied here to the Hénon's mapping and the driven conservative Duffing's oscillator.  相似文献   

20.
Together with the main 11-year cycle, solar activity also displays intracycle periodicities. A simple nonlinear model that describes the 11-year solar cycle with subperiodicities can be derived from the usual α – ω dynamo theory in the form of a Van der Pol equation with a forcing term. In this paper the results obtained from the Van der Pol oscillator describing the amplitude modulations and periodicities observed from the data set of the global daily coronal emission of the Fe xiv line at 530.3 nm are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号