首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the changes of saturated hydraulic conductivity, Ksat , with depth of latosols developed on Precambrian basement rocks under primary rainforest, pasture and teak. In all cases, Ksat decreased with depth, with most of the decrease occurring between the surface and a depth of 30 cm. In conjunction with prevailing rainfall intensities and frequencies, this anisotropy supports a pronounced lateral component of hillslope flow paths, and also of overland flow under pasture. Our results are at variance with data from other latosols where Ksat tends to increase with depth, and hence suggest that considerable restraint is needed in generalization and extrapolation until results from a co‐ordinated effort at hydrology‐oriented data collection become available. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Understanding land use/land cover (LULC) effects on tropical soil infiltration is crucial for maximizing watershed scale hydro-ecosystem services and informing land managers. This paper reports results from a multiyear investigation of LULC effects on soil bulk infiltration in steep, humid tropical, and lowland catchments. A rainfall simulator applied water at measured rates on 2 × 6 m plots producing infiltration through structured, granulated, and macroporous Ferralsols in Panama's central lowlands. Time-lapse electrical resistivity tomography (ERT) helped to visualize infiltration depth and bulk velocity. A space-for-time substitution methodology allowed a land-use history investigation by considering the following: (a) a continuously heavy-grazed cattle pasture, (b) a rotationally grazed traditional cattle pasture, (c) a 4-year-old (y.o.) silvopastoral system with nonnative improved pasture grasses and managed intensive rotational grazing, (d) a 7 y.o. teak (Tectona grandis) plantation, (e) an approximately 10 y.o. secondary succession forest, (f) a 12 y.o. coffee plantation (Coffea canephora), (g) an approximately 30 y.o. secondary succession forest, and (h) a >100 y.o. secondary succession forest. Within a land cover, unique plot sites totalled two at (a), (c), (d), (e), and (g); three at (b); and one at (f) and (h). Our observations confirmed measured infiltration scale dependency by comparing our 12 m2 plot-scale measurements against 8.9 cm diameter core-scale measurements collected by others from nearby sites. Preferential flow pathways (PFPs) significantly increased soil infiltration capacity, particularly in forests greater than or equal to 10 y.o. Time-lapse ERT observations revealed shallower rapid bulk infiltration and increased rapid lateral subsurface flow in pasture land covers when compared with forest land covers and highlighted how much subsurface flow pathways can vary within the Ferralsol soil class. Results suggest that LULC effects on PFPs are the dominant mechanism by which LULC affects throughfall partitioning, runoff generation, and flow pathways.  相似文献   

3.
4.
This article presents the results of a field investigation of saturated hydraulic conductivity Ksat and bulk density (ρbd) in an Atlantic blanket bog in the southwest of Ireland. Starting at a peatland stream and moving along an uphill transect toward the peatland interior, ρbd and Ksat were examined at regular intervals. Saturated horizontal hydraulic conductivity (Khsat) and vertical (Kvsat) was estimated at two depths: 10–20 and 30–40 cm below the peat surface, whereas ρbd was estimated for the full profile. We consider two separate zones, one a riparian zone extending 10 m from the stream and a second zone in the bog interior. We found that the Ksat was higher (~10–5 m s–1) in the bog interior than that in the riparian zone (~10–6 m s–1), whereas the converse applied to bulk density, with lowest density (~0.055 g cm–3) at the interior and highest (~0.11 g cm–3) at the riparian zone. In general, we found Khsat to be approximately twice the Kvsat. These results support the idea that the lower Ksat at the margins control the hydrology of blanket peatlands. It is therefore important that the spatial variation of these two key properties be accommodated in hydrological models if the correct rainfall runoff characteristics are to be correctly modelled. Stream flow analysis over 3 years at the peatland catchment outlet showed that the stream runoff was composed of 8% base flow and 92% flood flow, suggesting that this blanket peatland is a source rather than a sink for floodwaters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents an assessment of the relationship between near-surface soil moisture (SM) and SM at other depths in the root zone under three different land uses: irrigated corn, rainfed corn and grass. This research addresses the question whether or not near-surface SM can be used reliably to predict plant available root zone SM and SM at other depths. For this study, a realistic soil-water energy balance process model is applied to three locations in Nebraska representing an east-to-west hydroclimatic gradient in the Great Plains. The applications were completed from 1982 through to 1999 at a daily time scale. The simulated SM climatologies are developed for the root zone as a whole and for the five layers of the soil profile to a depth of 1·2 m. Over all, the relationship between near-surface SM (0–2·5 cm) and plant available root zone SM is not strong. This applies to all land uses and for all locations. For example, r estimates range from 0·02 to 0·33 for this relationship. Results for near-surface SM and SM of several depths suggest improvement in r estimates. For example, these estimates range from − 0·19 to 0·69 for all land uses and locations. It was clear that r estimates are the highest (0·49–0·69) between near-surface and the second layer (2·5–30·5 cm) of the root zone. The strength of this type of relationship rapidly declines for deeper depths. Cross-correlation estimates also suggest that at various time-lags the strength of the relationship between near-surface SM and plant available SM is not strong. The strength of the relationship between SM modulation of the near surface and second layer over various time-lags slightly improves over no lags. The results suggest that use of near-surface SM for estimating SM at 2·5–30 cm is most promising. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

7.
Both evergreen and deciduous forests (Efs and Dfs) are widely distributed under similar climatic conditions in tropical monsoon regions. To clarify the hydraulic properties of the soil matrix in different forest types and their effects on soil water storage capacity, the soil pore characteristics (SPC) were investigated in Ef and Df stands in three provinces in Cambodia. Soils in the Ef group were characterized in common by large amounts of coarse pores with moderate pore size distribution and the absence of an extremely low Ks at shallow depths, compared to Df group soils. The mean available water capacity of the soil matrix (AWCsm) for all horizons of the Ef and Df group soils was 0·107 and 0·146 m3 m?3, respectively. The mean coarse pore volume of the soil matrix (CPVsm) in the Ef and Df groups was 0·231 and 0·115 m3 m?3, respectively. A water flow simulation using a lognormal distribution model for rain events in the early dry season indicated that variation in SPC resulted in a larger increase in available soil water in Ef soils than in Df soils. Further study on deeper soil layers in Ef and each soil type in Df is necessary for the deeper understanding of the environmental conditions and the hydrological modelling of each forest ecosystem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The form and functioning of peatlands depend strongly on their hydrological status, but there are few data available on the hydraulic properties of tropical peatlands. In particular, the saturated hydraulic conductivity (K) has not previously been measured in neotropical peatlands. Piezometer slug tests were used to measure K at two depths (50 and 90 cm) in three contrasting forested peatlands in the Peruvian Amazon: Quistococha, San Jorge and Buena Vista. Measured K at 50 cm depth varies between 0.00032 and 0.11 cm s?1, and at 90 cm, it varies between 0.00027 and 0.057 cm s?1. Measurements of K taken from different areas of Quistococha showed that spatial heterogeneity accounts for ~20% of the within‐site variance and that depth is a good predictor of K. However, K did not vary significantly with depth at Buena Vista and San Jorge. Statistical analysis showed that ~18% of the variance in the K data can be explained by between‐site differences. Simulations using a simple hydrological model suggest that the relatively high K values could lead to lowering of the water table by >10 cm within ~48 m of the peatland edge for domed peatlands, if subjected to a drought lasting 30 days. However, under current climatic conditions, even with high K, peatlands would be unable to shed the large amount of water entering the system via rainfall through subsurface flow alone. We conclude that most of the water leaves these peatlands via overland flow and/or evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Seasonal oxygen-18 variations in precipitation, throughfall, soil water, spring flow and stream baseflow were analysed to compare the hydrology of two forested basins in West Virginia (WV) (34 and 39 ha) and one in Pennsylvania (PA) (1134 ha). Precipitation and throughfall were measured with funnel/bottle samplers, soil water with ceramic-cup suction lysimeters and spring flow/baseflows by grab and automatic sampling during the period March 1989 to March 1990. Isotopic damping depths, or depths required to reduce the amplitude of subsurface oxygen-18 fluctuations to 37% of the surface amplitude, were generally similar for soil water on the larger PA basin, and baseflows and headwater spring flows on the smaller WV basins. Computed annual isotopic damping depths for these water sources averaged 49 cm using soil depth as the flow path length. The equivalent annual mean hydraulic diffusivity for the soil flow paths was 21 cm2 d−1. Mean transit times, based upon an assumed exponential distribution of transit times, ranged from 0·2 y for soil water at a depth of 30 cm on the larger catchment, to 1·1–1·3 y for most spring flows and 1·4–1·6 y for baseflows on the smaller catchments. Baseflow on the larger PA basin and flow of one spring on a small WV basin showed no detectable seasonal fluctuations in oxygen-18, indicating flow emanated from sources with mean transit times greater than about 5 y. Based upon this soil flow path approach, it was concluded that seasonal oxygen-18 variations can be used to infer mean annual isotopic damping depths and diffusivities for soil depths up to approximately 170 cm. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
In New Caledonia wildfires and invasive mammals (deer and wild pigs) constitute the major agents of land surface degradation. Our study reveals the linkage between land cover and water balance on the northeast coast of New Caledonia (2400 mm annual rainfall) located on a micaschist basement. The hydrological regime of characteristic and representative land surfaces is assessed using a 1-year record from three 100 m2 plots each, located in a forest area degraded by an invasive fauna, in a woody savannah which is regularly burned, and in a healthy forest area. The three plots present highly contrasting hydrological regimes, with annual and maximum runoff/rain ratios during a rain event of, respectively, 0.82, 0.16, 0.03, and 2.7, 0.7, 0.2, for the degraded forest, the savannah and the healthy forest. Such results suggest that subsurface flow originating from the contributing area above the degraded forest plot should exfiltrate inside the plot. A conceptual model for the degraded forest plot shows that water exfiltrating inside the plot represents 61% of the observed runoff. In savannahs, water should mainly be transferred downstream by subsurface flow within a thick organic soil layer limited by an impervious clay layer at a 20–30 cm depth. Savannahs are generally located above forests and generate the transfer of rainwater to downslope forests. Exfiltration into the forests can be the result of this transfer and depends on the thickness and permeability of the forest topsoils and on topographic gradients. Water exfiltration in forest areas highly degraded by pigs and deer enhances erosion and increases further degradation. It probably also limits percolation in the areas located downstream by increasing the amount of superficial runoff concentrated in gullies.  相似文献   

13.
Little Kickapoo Creek (LKC), a low‐gradient stream, mobilizes its streambed–fundamentally altering its near‐surface hyporheic zone–more frequently than do higher‐gradient mountain and karst streams. LKC streambed mobility was assessed through streambed surveys, sediment sampling, and theoretical calculations comparing basal shear stress (τb) with critical shear stress (τc). Baseflow τb is capable of entraining a d50 particle; bankfull flow could entrain a 51·2 mm particle. No particle that large occurs in the top 30 cm of the substrate, suggesting that the top 30 cm of the substrate is mobilized and redistributed during bankfull events. Bankfull events occur on average every 7·6 months; flows capable of entraining d50 and d85 particles occur on average every 0·85 and 2·1 months, respectively. Streambed surveys verify streambed mobility at conditions below bankfull. While higher gradient streams have higher potential energy than LKC, they achieve streambed‐mobilization thresholds less frequently. Heterogeneous sediment redistribution creates an environment where substrate hydraulic conductivity (K) varies over four orders of magnitude. The frequency and magnitude of the substrate entrainment has implications on hyporheic zone function in fluid, solute and thermal transport models, interpretations of hyporheic zone stability, and understanding of LKC's aquatic ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements of saturated hydraulic conductivity (Ks) and diagnostic model simulations show that all types of logging road/trail in the 14·4 ha Bukit Tarek Experimental Catchment 3 (BTEC3) generate substantial Horton overland flow (HOF) during most storms, regardless of design and level of trafficking. Near‐surface Ks(0–0·05 m) on the main logging road, skid trails and newly constructed logging terraces was less than 1, 2 and 34 mm h?1, respectively. Near‐surface Ks on an abandoned skid trail in an adjacent basin was higher (62 mm h?1), owing to the development of a thin organic‐rich layer on the running surface over the past 40 years. Saturated hydraulic conductivity measured at 0·25 m below the surface of all roads was not different (all <6 mm h?1) and corresponded to the Ks of the adjacent hillslope subsoil, as most roads were excavated into the regolith more than 0·5–1 m. After 40 years, only limited recovery in near‐surface Ks occurred on the abandoned skid trail. This road generated HOF after the storage capacity of the upper near‐surface layer was exceeded during events larger than about 20 mm. Thus, excavation into low‐Ks substrate had a greater influence on the persistence of surface runoff production than did surface compaction by machinery during construction and subsequent use during logging operations. Overland flow on BTEC3 roads was also augmented by the interception of shallow subsurface flow traveling along the soil–saprolite/bedrock interface and return flow emerging from the cutbank through shallow biogenic pipes. The most feasible strategy for reducing long‐term road‐related impacts in BTEC3 is limiting the depth of excavation and designing a more efficient road network, including minimizing the length and connectivity of roads and skid trails. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Water flow in the soil–root–stem system was studied in a flooded riparian hardwood forest in the upper Rhine floodplain. The study was undertaken to identify the vertical distribution of water uptake by trees in a system where the groundwater is at a depth of less than 1 m. The three dominant ligneous species (Quercus robur, Fraxinus excelsior and Populus alba) were investigated for root structure (vertical extension of root systems), leaf and soil water potential (Ψm), isotopic signal (18O) of soil water and xylem sap. The root density of oak and poplar was maximal at a depth of 20 to 60 cm, whereas the roots of the ash explored the surface horizon between 0 and 30 cm, which suggests a complementary tree root distribution in the hardwood forest. The flow density of oak and poplar was much lower than that of the ash. However, in the three cases the depth of soil explored by the roots reached 1·2 m, i.e. just above a bed of gravel. The oak roots had a large lateral distribution up to a distance of 15 m from the trunk. The water potential of the soil measured at 1 m from the trunk showed a zone of strong water potential between 20 and 60 cm deep. The vertical profile of soil water content varied from 0·40 to 0·50 cm3 cm?3 close to the water table, and 0·20 to 0·30 cm3 cm?3 in the rooting zone. The isotopic signal of stem water was constant over the whole 24‐h cycle, which suggested that the uptake of water by trees occurred at a relatively constant depth. By comparing the isotopic composition of water between soil and plant, it was concluded that the water uptake occurred at a depth of 20 to 60 cm, which was in good agreement with the root and soil water potential distributions. The riparian forest therefore did not take water directly from the water table but from the unsaturated zone through the effect of capillarity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The proposed harvesting of previously undeveloped forests in north coastal British Columbia requires an understanding of hydrological responses. Hydrometric and isotopic techniques were used to examine the hydrological linkages between meteoric inputs to the surface‐groundwater system and runoff response patterns of a forest‐peatland complex. Quickflow accounted for 72–91% of peak storm discharge. The runoff ratio was lowest for open peatland areas with thick organic horizons (0·02–0·05) due to low topographic gradients and many surface depressions capable of retaining surface water. Runoff ratio increased comparatively for ephemeral surface seep flows (0·06–0·40) and was greatest in steeply sloping forest communities with more permeable soils (0·33–0·69). The dominant mechanism for runoff generation was saturated shallow subsurface flow. Groundwater fluxes from the organic horizon of seeps (1·70–1·72 m3 day?1 m?1) were an important component of quickflow. The homogeneous δ2H? δ18O composition of groundwater indicated attenuation of the seasonal rainfall signal by mixing during recharge. The positive correlation (r2 = 0·64 and 0·38, α = 0·05) between slope index and δ18O values in groundwater suggests that the spatial pattern in the δ18O composition along the forest‐peatland complex is influenced by topography and provides evidence that topographic indices may be used to predict groundwater residence time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Many remaining areas of tropical rainforest in south‐east Asia are located on landscapes dominated by deep valleys and very steep slopes. Now that logging activities are extending into these steeplands, it is essential to understand how the natural rainforest system behaves if any kind of realistic assessment of the effects of such disturbance is to be made. This paper examines the hydrological behaviour of an undisturbed rainforest system on steep topography in the Temburong District of Brunei, north‐west Borneo. The physical and hydrological properties of the regolith material are generally typical of tropical residual soils. The regolith has a clay texture and a low dry bulk density beneath a superficial litter/organic horizon. The infiltration capacity of the surface soil was several hundred mm h−1. That of the exposed mineral subsoil was an order of magnitude less, similar to the saturated hydraulic conductivity (Ksat) of around 180 mm h−1 at a depth of 150 cm. There was no indication that Ksat reduced with depth except very near the bedrock interface. Soil tensions were measured using a two‐dimensional array of tensiometers on a 30° slope. During dry season conditions, infiltrating rain‐water contributes to soil moisture, and drying of the soil is dominated by transpiration losses. During wet season conditions, perched water tables quickly develop during heavy rainfall, giving rise to the rapid production of return flow in ephemeral channels. No infiltration excess or saturation overland flow was observed on hillslopes away from channel margins. Subsurface storm flow combined with return flow produce stream flow hydrographs with high peak discharges and very short lag times. Storm event runoff coefficients are estimated to be as high as 40%. It is concluded that the most distinctive feature of the hydrology of this ‘steepland rainforest’ is the extremely ‘flashy’ nature of the catchment runoff regime produced by the combination of thin but very permeable regolith on steep slopes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Research shows that water repellency is a key hydraulic property that results in reduced infiltration rates in burned soils. However, more work is required in order to link the hydrological behaviour of water repellent soils to observed runoff responses at the plot and hillslope scale. This study used 5 M ethanol and water in disc infiltrometers to quantify the role of macropore flow and water repellency on spatial and temporal infiltration patterns in a burned soil at plot (<10 m2) scale in a wet eucalypt forest in south‐east Australia. In the first summer and winter after wildfire, an average of 70% and 60%, respectively, of the plot area was water repellent and did not contribute to infiltration. Macropores (r > 0·5 mm), comprising just 5·5% of the soil volume, contributed to 70% and 95%, respectively, of the field‐saturated and ponded hydraulic conductivity (Kp). Because flow occurred almost entirely via macropores in non‐repellent areas, this meant that less than 2·5% of the soil surface effectively contributed to infiltration. The hydraulic conductivity increased by a factor of up to 2·5 as the hydraulic head increased from 0 to 5 mm. Due to the synergistic effect of macropore flow and water repellency, the coefficient of variation (CV) in Kp was three times higher in the water‐repellent soil (CV = 175%) than under the simulated non‐repellent conditions (CV = 66%). The high spatial variability in Kp would act to reduce the effective infiltration rate during runoff generation at plot scale. Ponding, which tend to increase with increasing scale, activates flow through macropores and would raise the effective infiltration rates at larger scales. Field experiments designed to provide representative measurements of infiltration after fire in these systems must therefore consider both the inherent variability in hydraulic conductivity and the variability in infiltration caused by interactions between surface runoff and hydraulic conductivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号