首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   

2.
Abstract

This paper describes the use of a simple two stage rainfall-runoff model in which a curve number (CN) principle is used to calculate the soil water content and, subsequently, the rainfall contribution to direct runoff and groundwater flow. The maximum soil water retention, S, is used to express various characteristics of a catchment (infiltration rate, soil cover and land use, as in the CN method) relevant to flood formation. Using historical flood events, the model is calibrated, and the statistical distribution parameters of peak flows determined. With the same historical input data scenarios (rainfall), sets of flood hydrographs are simulated for various values of the parameter S, and corresponding distribution parameters of peak flows are determined. This procedure is used to demonstrate possible changes in flood regime to be expected due to changes of the catchment soil properties and its vegetation cover. A case study is presented for the River Hron catchment, area 582 km2, in the mountainous region of central Slovakia.  相似文献   

3.
Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution and errors. When using these rainfall datasets as input for hydrological models, their errors and uncertainties propagate through the hydrological system. The aim of this study is to investigate the effect of differences between rainfall measurement techniques on groundwater and discharge simulations in a lowland catchment, the 6.5‐km2 Hupsel Brook experimental catchment. We used five distinct rainfall data sources: two automatic raingauges (one in the catchment and another one 30 km away), operational (real‐time and unadjusted) and gauge‐adjusted ground‐based C‐band weather radar datasets and finally a novel source of rainfall information for hydrological purposes, namely, microwave link data from a cellular telecommunication network. We used these data as input for the, a recently developed rainfall‐runoff model for lowland catchments, and intercompared the five simulated discharges time series and groundwater time series for a heavy rainfall event and a full year. Three types of rainfall errors were found to play an important role in the hydrological simulations, namely: (1) Biases, found in the unadjusted radar dataset, are amplified when propagated through the hydrological system; (2) Timing errors, found in the nearest automatic raingauge outside the catchment, are attenuated when propagated through the hydrological system; (3) Seasonally varying errors, found in the microwave link data, affect the dynamics of the simulated catchment water balance. We conclude that the hydrological potential of novel rainfall observation techniques should be assessed over a long period, preferably a full year or longer, rather than on an event basis, as is often done. Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd.  相似文献   

4.
The suitability of the physically based model SHETRAN for simulating sediment generation and delivery with a high degree of spatial (20 m) and temporal (sub‐hourly) resolution was assessed through application of the model to a 167‐km2 catchment leading to an estuary in New Zealand. By subdividing the catchment and conducting calculations on a computer cluster for a 6‐month hydrology initialisation period, it was possible to simulate a large rainfall event and its antecedent conditions in 24 h of computation time. The model was calibrated satisfactorily to catchment outlet flow and sediment flux for a large rainfall event in two subcatchments (~2 km2). Validation for a separate subcatchment was successful for flow (Nash–Sutcliff efficiency of 0.84) with a factor 2.1 over‐prediction for sediment load. Validation for sediment at full catchment scale using parameters from the subcatchment scale was good for flow but poor for sediment, with gross under‐estimation of the dominant stream sources of sediment. After recalibration at catchment scale, validation for a separate event gave good results for flow (Nash–Sutcliff efficiency of 0.93) and sediment load within a factor of two of measurements. An exploratory spatially explicit landslide model was added to SHETRAN, but it was not possible to test this fully because no landslides were observed in the study period. Application to climate change highlighted the non‐linear response to extreme rainfall. However, full exploration of land use and climate change and the evaluation of uncertainty were severely constrained by computational limitations. Subdivision of the catchment with separate stream routing is suggested as a way forward to overcome these limitations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Understanding the intensity and duration of tropical rain events is critical to modelling the rate and timing of wet‐canopy evaporation, the suppression of transpiration, the generation of infiltration‐excess overland flow and hence to erosion, and to river responsiveness. Despite this central role, few studies have addressed the characteristics of equatorial rainstorms. This study analyses rainfall data for a 5 km2 region largely comprising of the 4 km2 Sapat Kalisun Experimental Catchment in the interior of northeastern Borneo at sampling frequencies from 1 min?1 to 1 day?1. The work clearly shows that most rainfall within this inland, forested area is received during regular short‐duration events (<15 min) that have a relatively low intensity (i.e. less than two 0·2 mm rain‐gauge tips in almost all 5 min periods). The rainfall appears localized, with significant losses in intergauge correlations being observable in minutes in the case of the typical mid‐afternoon, convective events. This suggests that a dense rain‐gauge network, sampled at a high temporal frequency, is required for accurate distributed rainfall‐runoff modelling of such small catchments. Observed rain‐event intensity is much less than the measured infiltration capacities, and thus supports the tenet of the dominance of quick subsurface responses in controlling river behaviour in this small equatorial catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Topography is a dominant factor in hillslope hydrology. TOPMODEL, which uses a topographical index derived from a simplified steady state assumption of mass balance and empirical equations of motion over a hillslope, has many advantages in this respect. Its use has been demonstrated in many small basins (catchment areas of the order of 2–500 km2) but not in large basins (catchment areas of the order of 10 000–100 000 km2). The objective of this paper is to introduce the Block‐wise TOPMODEL (BTOP) as an extension of the TOPMODEL concept in a grid based framework for distributed hydrological simulation of large river basins. This extension was made by redefining the topographical index by using an effective contributing area af(a) (0?f(a)?1) per unit grid cell area instead of the upstream catchment area per unit contour length and introducing a concept of mean groundwater travel distance. Further the transmissivity parameter T0 was replaced by a groundwater dischargeability D which can provide a link between hill slope hydrology and macro hydrology. The BTOP model uses all the original TOPMODEL equations in their basic form. The BTOP model has been used as the core hydrological module of an integrated distributed hydrological model YHyM with advanced modules of precipitation, evapotranspiration, flow routing etc. Although the model has been successfully applied to many catchments around the world since 1999, there has not been a comprehensive theoretical basis presented in such applications. In this paper, an attempt is made to address this issue highlighted with an example application using the Mekong basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hugh G. Smith 《水文研究》2008,22(16):3135-3148
Historically upland headwater catchments in south‐eastern Australia have undergone extensive gully erosion that has removed large amounts of sediment to lowlands. Recent research suggests these upland areas may continue to dominate fine sediment loads in lowland rivers. Improved understanding of sediment transfer through upland headwater catchments may have implications for interpreting downstream sediment supply. In this study a nested catchment design was utilized to examine suspended sediment yields and delivery from a small tributary sub‐catchment (1·64 km2) to the study catchment outlet (53·5 km2). Monitoring of suspended sediment concentration and discharge was undertaken for a period of nearly two years and used to estimate suspended sediment loads. Estimated total suspended sediment exports over the period of monitoring were 24·16 t from the sub‐catchment and 550·3 t from the catchment, which are generally less than previous reported small catchment yields in south‐eastern Australia. The extent of sediment delivery was examined using between‐site ratios of specific sediment yield per unit area and incised channel length. Sediment delivery was high under average rainfall conditions, but seasonally dependent. Both suspended sediment yields and the extent of delivery peaked over spring months, supplemented by remobilization of sediment stored during summer months in the main catchment channel. The findings of this study suggest much of the suspended sediment exported from small incised upland sub‐catchments (1–2 km2) may be delivered to downstream reaches under average rainfall conditions, which, in conjunction with the findings of previous research supports the potential importance of contributions from these areas to suspended sediment loads in lowland rivers during high flow periods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

10.
A rainfall‐runoff model based on an artificial neural network (ANN) is presented for the Blue Nile catchment. The best geometry of the ANN rainfall‐runoff model in terms of number of hidden layers and nodes is identified through a sensitivity analysis. The Blue Nile catchment (about 300 000 km2) in the Nile basin is selected here as a case study. The catchment is classified into seven subcatchments, and the mean areal precipitation over those subcatchments is computed as a main input to the ANN model. The available daily data (1992–99) are divided into two sets for model calibration (1992–96) and for validation (1997–99). The results of the ANN model are compared with one of physical distributed rainfall‐runoff models that apply hydraulic and hydrologic fundamental equations in a grid base. The results over the case study area and the comparative analysis with the physically based distributed model show that the ANN technique has great potential in simulating the rainfall‐runoff process adequately. Because the available record used in the calibration of the ANN model is too short, the ANN model is biased compared with the distributed model, especially for high flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

12.
In hydrology, the storage‐discharge relationship is a fundamental catchment property. Understanding what controls this relationship is at the core of catchment science. To date, there are no direct methods to measure water storage at catchment scales (101–103 km2). In this study, we use direct measurements of terrestrial water storage dynamics by means of superconducting gravimetry in a small headwater catchment of the Regen River, Germany, to derive empirical storage‐discharge relationships in nested catchments of increasing scale. Our results show that the local storage measurements are strongly related to streamflow dynamics at larger scales (> 100 km2; correlation coefficient = 0.78–0.81), but at small scale, no such relationship exists (~ 1 km2; correlation coefficients = ?0.11). The geologic setting in the region can explain both the disconnection between local water storage and headwater runoff, and the connectivity between headwater storage and streams draining larger catchment areas. More research is required to understand what controls the form of the observed storage‐discharge relationships at the catchment scale. This study demonstrates that high‐precision gravimetry can provide new insights into the complex relationship between state and response of hydrological systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We calibrated an integrated flow–tracer model to simulate spatially distributed isotope time series in stream water in a 7.9‐km2 catchment with an urban area of 13%. The model used flux tracking to estimate the time‐varying age of stream water at the outlet and both urbanized (1.7 km2) and non‐urban (4.5 km2) sub‐catchments over a 2.5‐year period. This included extended wet and dry spells where precipitation equated to >10‐year return periods. Modelling indicated that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of 171 days compared with 456 days in the non‐urban tributary. For the larger catchment, the MTT was 280 days. Here, the response of urban contributing areas dominated smaller and more moderate runoff events, but rural contributions dominated during the wettest periods, giving a bi‐modal distribution of water ages. Whilst the approach needs refining for sub‐daily time steps, it provides a basis for projecting the effects of urbanization on stream water transit times and their spatial aggregation. This offers a novel approach for understanding the cumulative impacts of urbanization on stream water quantity and quality, which can contribute to more sustainable management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This article investigates the soil moisture dynamics within two catchments (Stanley and Krui) in the Goulburn River in NSW during a 3‐year period (2005–2007) using the HYDRUS‐1D soil water model. Sensitivity analyses indicated that soil type, and leaf area index were the key parameters affecting model performance. The model was satisfactorily calibrated on the Stanley microcatchment sites with a single point rainfall record from this microcatchment for both surface 30 cm and full‐profile soil moisture measurements. Good correlations were obtained between observed and simulated soil water storage when calibrations for one site were applied to the other sites. We extended the predictions of soil moisture to a larger spatial scale using the calibrated soil and vegetation parameters to the sites in the Krui catchment where soil moisture measurement sites were up to 30 km distant from Stanley. Similarly good results show that it is possible to use a calibrated soil moisture model with measurements at a single site to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000 km2 given similar soils and vegetation and local rainfall data. Site predictions were effectively improved by our simple data assimilation method using only a few sample data collected from the site. This article demonstrates the potential usefulness of continuous time, point‐scale soil moisture data (typical of that measured by permanently installed TDR probes) and simulations for predicting the soil wetness status over a catchment of significant size (up to 1000 km2). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Future catchment planning requires a good understanding of the impacts of land use and management, especially with regard to nutrient pollution. A range of readily usable tools, including models, can play a critical role in underpinning robust decision‐making. Modelling tools must articulate our process understanding, make links to a range of catchment characteristics and scales and have the capability to reflect future land‐use management changes. Hence, the model application can play an important part in giving confidence to policy makers that positive outcomes will arise from any proposed land‐use changes. Here, a minimum information requirement (MIR) modelling approach is presented that creates simple, parsimonious models based on more complex physically based models, which makes the model more appropriate to catchment‐scale applications. This paper shows three separate MIR models that represent flow, nitrate losses and phosphorus losses. These models are integrated into a single catchment model (TOPCAT‐NP), which has the advantage that certain model components (such as soil type and flow paths) are shared by all three MIR models. The integrated model can simulate a number of land‐use activities that relate to typical land‐use management practices. The modelling process also gives insight into the seasonal and event nature of nutrient losses exhibited at a range of catchment scales. Three case studies are presented to reflect the range of applicability of the model. The three studies show how different runoff and nutrient loss regimes in different soil/geological and global locations can be simulated using the same model. The first case study models intense agricultural land uses in Denmark (Gjern, 114 km2), the second is an intense agricultural area dominated by high superphosphate applications in Australia (Ellen Brook, 66 km2) and the third is a small research‐scale catchment in the UK (Bollington Hall, 2 km2). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

19.
Using a large set of rainfall–runoff data from 234 watersheds in the USA, a catchment area‐based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS‐CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS‐CN method showed that the modified version performed better than did the existing one on the data of all seven area‐based groups of watersheds ranging from 0·01 to 310·3 km2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Upland erosion and the resulting reservoir siltation is a serious issue in the Isábena catchment (445 km2 Central Spanish Pyrenees). During a three‐month period, water and sediment fluxes have been monitored at the catchment outlet (Capella), two adjacent subcatchments (Villacarli, 41 km2; Cabecera, 145 km2) and the elementary badland catchment Torrelaribera (8 ha). This paper presents the results of the monitoring, a method for the calculation of a sedigraph from intermittent measurements and the derived sediment yields at the monitored locations. The observed suspended sediment concentrations (SSCs) demonstrate the role of badlands as sediment sources: SSCs of up to 280 g l?1 were encountered for Villacarli, which includes large badland areas. SSCs at the Cabecera catchment, with great areas of woodland, barely exceeded 30 g l?1. SSCs directly at the sediment source (Torrelaribera) were comparable to those at Villacarli, suggesting a close connection within this subcatchment. At Capella, SSCs of up to 99 g l?1 were observed. For all sites, SSC displayed only a loose correlation with discharge, inhibiting the application of a simple sediment rating curve. Instead, ancillary variables acting as driving forces or proxies for the processes (rainfall energy, cumulative discharge, rising/falling limb data) were included in a quantile regression forest model to explain the variability in SSC. The variables with most predictive power vary between the sites, suggesting the predominance of different processes. The subsequent flood‐based calculation of sediment yields attests high specific sediment yields for Torrelaribera and Villacarli (6277 and 1971 t km?2) and medium to high yields for Cabecera and Capella (139 and 410 t km?2) during the observation period. In all catchments, most of the sediment was exported during intense storms of late summer. Later flood events yield successively less sediment. Relating upland sediment production to yield at the outlet suggests considerable effects of sediment storage within the river channel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号