首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A mathematical model was developed for simulating runoff generation and soil erosion on hillslopes. The model is comprised of three modules: one for overland flow, one for soil infiltration, and one for soil erosion including rill erosion and interrill erosion. Rainfall and slope characteristics affecting soil erosion on hillslopes were analysed. The model results show that the slope length and gradient, time distribution rainfall, and distribution of rills have varying influence on soil erosion. Erosion rate increases nonlinearly with increase in the slope length; a long slope length leads to more serious erosion. The effect of the slope gradient on soil erosion can be both positive and negative. Thus, there exists a critical slope gradient for soil erosion, which is about 45° for the rate of erosion at the end of the slope and about 25° for the accumulated erosion. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Experiments to test relationships between slope length, percolation, and runoff were carried out in a laboratory flume under simulated rainfall at intensities from 24·2-26 mm h?1. A composite soil subject to sealing was mixed from a clay and a sand and tested on 2·39 m, 7·18 m, and 17 m slopes for a minimum of 200 min. Runoff discharge is not a simple function of rainfall excess and slope length but shows a complex pattern dominated by surface sealing, rill development and headcut incision. Rill development by concentrated surface wash conformed to established threshold hydraulic conditions, but subsequent headcut incision was necessary to breach the seal and significantly affect percolation/runoff ratios. Headcut evolution is complex, apparently reflecting hydraulic instability and possibly different stages in seal development. Headcut and rill incision shows a cyclic pattern interspersed with broad areas of sheetwash and colluvial deposition where percolation rates are very low.  相似文献   

5.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A total of 15 rainfall simulation experiments were conducted in a 1 m by 2 m box varying slope (10, 20, 30%) and rainfall intensity (60, 90, 120 mm h?1). The experiments were performed to study how rill networks initiate and evolve over time under controlled conditions with regard to the treatment variables considered, and to allow for input in a computer simulation model. Runoff and sediment yield samples were collected. Digital elevation models were calculated by means of photogrammetry for several time steps of most experiments. The soil used in the experiments was a basal till derived Cambisol typical for the Swiss Plateau. While significant differences were found for sediment yield, runoff did not vary significantly with treatment combinations. Increasing rainfall intensity had a larger effect on sediment yield than increasing slope. Rill density and energy expenditure decreased with time, suggesting that energy expenditure was a useful parameter to describe the emergence of rill network at the laboratory scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

8.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Despite numerous studies, the effect of slope on interrill erosion is not clearly established. Several interactions exist between erosion parameters that are not taken into account under experimental laboratory measurements and results need to be validated in the field. The influence of slope steepness (2 to 8 per cent) on soil loss for a crusted interrill area and the detachment and transport processes involved in the interaction between slope, rain characteristics and plot size were investigated. Sediment discharge and runoff rates were measured in bounded plots (1 m2 and 10 m2) under natural and simulated rainfall, allowing the analysis of a combination of detachment and transport processes at various scales in the field. Runoff rate increased from 20 to 90 per cent with increasing slope and rain intensity for both plot sizes, whereas sediment concentration increased from 2 to 6 g l−1 with increasing slope only for the 10 m2 plots. At the 1 m2 scale, erosion was transport‐limited due to the reduced rain‐impacted flow. Interactions between slope angle and rain intensity were observed for detachment and transport processes in interrill erosion. Results show the importance of an adapted experimental set‐up to get reference data for interrill erosion model development and validation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
This study examines the size characteristics of sediment removed from a semiarid hillslope by interrill overland flow. Rainfall simulation experiments were conducted on a runoff plot 18 m wide and 35 m long established on a piedmont hillslope in southern Arizona. The top of the plot coincided with the hillslope divide, and its outlet was located within a shallow rill. Samples of runoff were obtained from two cross-sections located in the interrill portion of the plot upslope of the rill and from a calibrated flume through which was directed interrill overland flow reaching the bottom of the plot. Analyses of sediment contained in these samples showed that sediment in interrill flow is finer than the matrix soil. The fineness of the interrill sediment compared to the matrix soil appears to be due to the inability of interrill overland flow to transport the coarser fraction of the sediment supplied to it by raindrop detachment. This finding implies that the rate of soil erosion in interrill areas is not. as is commonly supposed, limited by the rate at which raindrops can detach sediment but by the rate at which they detach sediment of a size that the overland flow is competent to transport. The relative fineness of sediment eroded from this hillslope is consistent with other evidence for the recent evolution of shrub-covered hillslopes in southern Arizona.  相似文献   

11.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
《国际泥沙研究》2022,37(5):653-661
Granite red soil (GRS) and Quaternary red clay (QRC) are two typical erodible soils in the red-soil region of southern China. Analytical and comparative studies of the characteristics of runoff and sediment yield for the two soils at various slopes are currently needed. The purpose of the current study was to clarify the characteristics of runoff and sediment yield for GRS and QRC at different slopes and to establish models for estimating sediment yield for the two soils. Forty-eight runoff microplots with four slopes (5°, 15°, 25°, and 35°) and two soils (GRS and QRC) were established and exposed to natural rainfall. Runoff and sediment yield were measured 10 times during the study period. Runoff and sediment yield for the two soils under the various slopes had similar temporal variations, and both increased with prior cumulative erosive rainfall. Runoff for GRS and QRC was moderately temporally variable, with coefficients of variation (CVs) from 46.2% to 60.6%, and sediment yield for QRC was strongly temporally variable, with CVs from 114.8% to 145.8%. Sediment yield for GRS increased with slope, but sediment yield for QRC first increased and then decreased, with a calculated inflection point of 18°, but runoff for both soils decreased with slope. The CVs of both runoff and sediment yield with slope for the two soils ranged from 3.6% to 88.0%, lower than the temporal variabilities, indicating that rainfall may have a larger impact than slope on runoff and sediment yield for QRC and GRS. Under the various slopes, runoff and sediment yield for both soils increased with rainfall and sediment yield increased with runoff, but the proportions of effective rainfall and runoff differed. Pedotransfer-function models based on rainfall, runoff, and slope accurately estimated sediment yield for the two soils, with the model fit coefficient of determination (R2) > 0.81 and the R2 for verification >0.79. These results improve the understanding of the laws governing erosion for different soil types in the red-soil region of southern China and are important for managing the erosion of collapsing gullies and sloping farmland in the region.  相似文献   

15.
A series of controlled laboratory experiments were conducted in order to obtain precise data on the hydraulic and sediment transport conditions during rill formation. Tests were carried out using a crusting-prone binary mixed soil in a 15 m long flume at an average slope of 0·087 under simulated rainfall. Rainfall intensities varied from 30–35 mm h?1 and developed about 70 per cent of the kinetic energy of natural rainfall of similar intensity. Runoff and sediment discharge measured at the downstream weir were strongly influenced by rill forming processes. Essentially, rill incision reduced runoff discharge as a result of increased percolation in rill channels but increased sediment discharge. Secondary entrainment processes, such as bank collapse, also increased sediment discharge at the weir. Knickpoint bifurcation and colluvial deposition, however, decreased sediment discharge. Rills always developed through the formation of a knickpoint. The critical condition for knickpoint initiation was the development of supercritical flow and waves which mould and incise the bed. Prior smoothing of the soil surface by entrainment and redistribution of sediment facilitated supercritical flow. Statistical analysis showed that hydraulic and sediment transport conditions differed significantly in rilled and unrilled flows. The relationship between sediment discharge, rill erosion, and flow hydraulics was found to be nonlinear, conforming to a standard power function in the form y = axb. Rills were also associated with significantly increased sediment transport capacities. However, rill initiation was not clearly defined by any specific hydraulic threshold. Instead, rilled and unrilled flows were separated by zones of transition within which both types of flow occur.  相似文献   

16.
Runoff and erosion processes can increase after wildfire and post-fire salvage logging, but little is known about the specific effects of soil compaction and surface cover after post-fire salvage logging activities on these processes. We carried out rainfall simulations after a high-severity wildfire and post-fire salvage logging to assess the effect of compaction (uncompacted or compacted by skid traffic during post-fire salvage logging) and surface cover (bare or covered with logging slash). Runoff after 71 mm of rainfall across two 30-min simulations was similar for the bare plots regardless of the compaction status (mean 33 mm). In comparison, runoff in the slash-covered plots averaged only 22 mm. Rainsplash in the downslope direction averaged 30 g for the bare plots across compaction levels and decreased significantly by 70% on the slash-covered plots. Sediment yield totalled 460 and 818 g m−2 for the uncompacted and compacted bare plots, respectively, and slash significantly reduced these amounts by an average rate of 71%. Our results showed that soil erosion was still high two years after the high severity burning and the effect of soil compaction nearly doubled soil erosion via nonsignificant increases in runoff and sediment concentration. Antecedent soil moisture (dry or wet) was the dominant factor controlling runoff, while surface cover was the dominant factor for rainsplash and sediment yield. Saturated hydraulic conductivity and interrill erodibility calculated from these rainfall simulations confirmed previous laboratory research and will support hydrologic and erosion modelling efforts related to wildfire and post-fire salvage logging. Covering the soil with slash mitigated runoff and significantly reduced soil erosion, demonstrating the potential of this practise to reduce sediment yield and soil degradation from burned and logged areas.  相似文献   

17.
Rill network development not only potentially affects hillslope and drainage network evolution, but also causes severe soil degradation. However, the studies on rill network development remain inconclusive. This study aimed to investigate the temporal and spatial development of hillslope rill networks and their characteristics based on rainfall simulations and field observations. A soil pan (10.0 m long × 3.0 m wide × 0.5 m deep) on a 20° slope was applied three successive simulated rains at two intensities of 50 and 100 mm h–1. The field observations were performed on two bare hillslope runoff plots (10.0 m long × 3.0 m wide) at 20°. Three typical erosive natural rainfall events were observed in the field, and rills were measured in detail, similar to the laboratory rainfall simulation. The results indicated that with increases in rainfall events, the rill network morphology varied from incipient formation to the maximum drainage network density. Four rill network development indicators (rill distribution density, distance between rills, rill bifurcation number, and confluence point number) exhibited different changes over time and space. Among the four indicators, the rill bifurcation number was the best indicator for describing rill network development. Rill flow energy increased and decreased cyclically on a slope ranging between ~3 and 4 m. Moreover, rill networks on loessial hillslopes generally evolved into dendritic rather than parallel forms. The development characteristics of the rill network were relatively similar between the laboratory simulation and natural field conditions. Over time, rill erosion control measures become increasingly difficult to implement as the rill network develops. The morphology of eroding rills evolved over time and space, which led to corresponding rill network development. Further study should quantify the impacts of rill network development on soil degradation and land development. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment delivery on rill and interrill areas   总被引:4,自引:0,他引:4  
Equations which relate sediment delivery to a power function of flow rate and slope gradient were evaluated in this study. The data used to parameterize the equations were obtained from sites where crop residues had been removed, and moldboard plowing and disking had occurred. Measurements of sediment delivery resulting from simulated rainfall were obtained from preformed rills and interrill areas. The equations provided reliable sediment delivery estimates for selected soils located throughout the United States. To use the sediment delivery equations, soil-related parameter values must be identified. Multiple regression analyses were performed to relate parameter values used in the equations to selected soil properties. Equations were also developed for estimating rill sediment delivery under rainfall conditions from rill soil loss and discharge data collected without the addition of rainfall. The equations identified in this study, and appropriate soils information, can be used to predict sediment delivery on both rill and interrill areas.  相似文献   

19.
Rill development studies have focused almost exclusively on surface erosion processes and critical threshold hydraulic conditions. Characteristic rill features, such as arcuate headcuts and knickpoints, are morphologically similar to the ‘theatre-headed’ valleys which have been associated with ‘sapping’ processes at various scales. This paper reports on laboratory experiments designed to identify linkages between surface flow hydraulics, subsurface moisture conditions and rill development. Experiments were carried out in a 16·57 m2 flume under simulated rainfall with soil samples up to 0·15 m depth in which moisture conditions were monitored by miniature time-domain reflectometer probes. Tests showed complex responses in which some rill incision reflected surface flow conditions, but major rill system development with markedly enhanced sediment yield was closely associated with high soil moisture contents. It was not possible to measure seepage forces directly, but calculation and observation indicate that these were less important than reduction in soil strength with saturation, which resulted in increased effective runoff erosivity. This caused concentrated undercutting along the water table at rill walls, while slightly stronger surface layers above the water table formed microscarps. These retreated along the water table into interrill surfaces, producing residual pediment transport slopes. The microscarps eventually disappeared when the water table reached the surface, eliminating differential soil strength. The experiments showed complex relationships between surface and subsurface erosional processes in evolving rill systems, strongly influenced by soil moisture dynamics. The very small topographic and hydraulic head amplitudes indicate that seepage forces and ‘sapping’ were minimal. The dominant effect of soil moisture was reduction of soil strength with saturation, and increased runoff entrainment. Experimental conditions were not unusual, either for agricultural fields or natural hillslopes, and the intricate interrelationship of surface and subsurface erosion processes observed is probably not uncommon. Attempts to link specific morphologic features at rill scale to dominance of surface or subsurface processes alone are therefore unlikely to be successful or reliable. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a case study of runoff and sediment generation under Submediterranean rangeland conditions (Ardèche drainage basin, France). Measurements indicate that on a rough hillslope interrill runoff and sediment are not produced uniformly over the slope surface. It is observed that runoff concentrates immediately in non-permanent interrill flow paths, which under average storm conditions vary in length from 1.0 to 12.5 m. Long interrill flow paths may eventually become permanent. These permanent flow paths, called pre-rills, are introduced as a new source area, and are considered to be the initial stage in the development of rills. Along pre-rills considerable quantities of runoff and sediment are carried away. This study also shows that calculations based on interrill, pre-rill, and rill runoff will only have significance if storm and soil conditions are specified in detail. It is concluded from a correlation analysis between the runoff volume and the amount of soil loss on a storm-by-storm basis that the runoff volume alone cannot explain the amount of sediment that is generated in each source area; soil availability is an additional factor that must be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号