首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
This paper describes a framework for an image processing procedure for operational agricultural crop area estimation. This operational framework has been conceived within the development of an Advanced Agricultural Information System (AAIS) for the “Regione del Veneto “ (RdV ‐ Veneto Region) in northeastern Italy. The objective of this program is to develop the ability to generating timely and accurate area estimates and production information for four major agricultural crops: soybeans, sugar beets, corn, and small grains. AAIS uses state of the art methods in remote sensing and geographic information systems (GIS) technology and integrates a variety of data types including satellite imagery. This paper describes the methodology developed for image and ancillary data processing for the production of crop area statistics. Using a combination of standard unsupervised classification and GIS operations that incorporate knowledge about the agricultural system, a “sequential masking” classification procedure was derived. This sequential masking procedure yielded crop classification accuracies that at the study site level range between 76% and 99% depending on the crop under study. We believe that classification accuracies will improve with full system implementation, along with the incorporation of new and/or improved thematic information and operational experience using AAIS‐based estimation.  相似文献   

2.
利用Savitzky-Golay滤波对覆盖江西省范围的SPOT VGT NDVI时间序列数据进行平滑处理的基础上,结合坡度数据,通过非监督分类的方法提取了江西省2000、2005和2010年水稻种植范围,并根据NDVI的年内动态变化,从水稻种植范围、水稻生长季起始时间、水稻复种指数和NDVI最大振幅等分析了江西省水稻种植和生长情况,探讨2000~2010年江西省水稻生产的变化。  相似文献   

3.
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude–Pottier and Freeman–Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude–Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman–Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.  相似文献   

4.
In this paper, we present a two-stage method for mapping habitats using Earth observation (EO) data in three Alpine sites in South Tyrol, Italy. The first stage of the method was the classification of land cover types using multi-temporal RapidEye images and support vector machines (SVMs). The second stage involved reclassification of the land cover types to habitat types following a rule-based spatial kernel. The highest accuracies in land cover classification were 95.1% overall accuracy, 0.94 kappa coefficient and 4.9% overall disagreement. These accuracies were obtained when the combination of images with topographic parameters and homogeneity texture was used. The habitat classification accuracies were rather moderate due to the broadly defined rules and possible inaccuracies in the reference map. Overall, our proposed methodology could be implemented to map cost-effectively alpine habitats over large areas and could be easily adapted to map other types of habitats.  相似文献   

5.
Site-specific information of crop types is required for many agro-environmental assessments. The study investigated the potential of support vector machines (SVMs) in discriminating various crop types in a complex cropping system in the Phoenix Active Management Area. We applied SVMs to Landsat time-series Normalized Difference Vegetation Index (NDVI) data using training datasets selected by two different approaches: stratified random approach and intelligent selection approach using local knowledge. The SVM models effectively classified nine major crop types with overall accuracies of >86% for both training datasets. Our results showed that the intelligent selection approach was able to reduce the training set size and achieved higher overall classification accuracy than the stratified random approach. The intelligent selection approach is particularly useful when the availability of reference data is limited and unbalanced among different classes. The study demonstrated the potential of utilizing multi-temporal Landsat imagery to systematically monitor crop types and cropping patterns over time in arid and semi-arid regions.  相似文献   

6.
综合多特征的Landsat 8时序遥感图像棉花分类方法   总被引:3,自引:0,他引:3  
传统的多时相遥感图像分类大多拘泥于单一特征,本文基于多时相的Landsat 8遥感数据,开展了综合多特征的特征提取与特征选择方法研究。综合了NDVI时间序列、最佳时相反射率光谱特征以及纹理特征作为初始分类特征,并采用基于属性重要度的粗糙集特征选择算法对其进行特征约简。分类结果表明:(1)利用初始分类特征,分类的总体精度达到92.81%,棉花提取精度达87.4%,与仅利用NDVI时间序列相比,精度分别提高5.53%和5.05%;(2)利用粗糙集选择后的特征分类,分类总体精度可达93.66%,棉花分类精度达92.73%,与初始分类特征提取结果相比,棉花分类精度提高5.33%。基于属性重要度的粗糙集特征选择不仅提高了分类精度,同时有效降低了分类器的计算复杂度。  相似文献   

7.
复种指数遥感监测方法   总被引:36,自引:6,他引:36  
范锦龙  吴炳方 《遥感学报》2004,8(6):628-636
复种指数是反映水土光与自然资源利用程度的指标 ,其实质是沿时间序列 ,反映某一种植制度对耕地的利用程度。联系复种指数与时间序列NDVI曲线的纽带是农作物年内的循环规律。时间序列的NDVI值蕴涵着植被的生长和枯萎的年循环节律 ,经时间序列谐函数分析法 (HarmonicAnalysisofTimeSeries ,HANTS)重构的NDVI曲线 ,可以准确地反映农作物的出苗、拔节、抽穗、收获等物理过程。因此 ,根据时间序列的NDVI曲线的周期性 ,可以反向捕捉到耕地农作物动态的信息 ,进而得到耕地的复种指数。本文依据上述原理 ,提出复种指数遥感监测的方法 ,然后用 1999年至 2 0 0 2年 4年的VGT(SPOT4卫星vegetation数据 )旬合成NDVI时间序列数据集提取了复种指数 ,并利用地面样区观测结果和统计数据进行检验 ,取得很高的精度。  相似文献   

8.
Land suitability analysis is prerequisite for sustainable agriculture and it plays a pivotal role in the niche based agricultural planning in mountain regions. In this paper different parameters viz. climatic (precipitation and temperature), topographic (elevation), soil type and land cover/land use have been used in order to perform land suitability evaluation for cereals food-grain crops in Himachal Pradesh using Geographic Information System (GIS). The suitability analysis was performed by digital processing of geo-referenced data (elevation, climate, soil and landcover) and calculating potential production areas by combining different types of geographical data through decision rules framed for each crop in ArcView spatial analyst. Suitable areas have been delineated for cereal crops in the form of land suitability maps. In comparison to the actual area under cereal crops, the possibility of further expansion under each cereal crop was determined. These discriminated areas appear suitable for growing these crops and can be harnessed efficiently for achieving long term sustainability and food security.  相似文献   

9.
单变量特征选择的苏北地区主要农作物遥感识别   总被引:2,自引:0,他引:2  
遥感识别多源特征综合和特征优选是提高遥感影像分类精度的关键技术。农作物遥感识别中,识别特征的相对单一和数量过多均会导致作物识别精度不理想。随机森林(random forests)采用分类与回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。单变量特征选择(univariate feature selection)能够对每一个待分类的特征进行测试,衡量该特征和响应变量之间的关系,根据得分舍弃不好的特征,优选得到的特征用于分类。本文基于随机森林和单变量特征选择,利用多时相光谱信息、植被指数信息、纹理信息及波段差值信息,设计多组分类实验方案,对江苏省泗洪县的高分一号(GF-1)和环境一号(HJ-1A)影像进行分类研究,旨在选择最佳的分类方案对实验区主要农作物进行识别和提取。实验结果表明:(1)多源信息综合的农作物分类精度明显高于单一的原始光谱特征分类,说明不同类型特征的引入能改善分类效果;(2)基于单变量特征选择算法的优选特征分类效果最佳,总体精度97.07%,Kappa系数0.96,表明了特征优选在降低维度的同时,也保证了较高的分类精度。随机森林和单变量特征选择结合的方法可以提高遥感影像的分类精度,为农作物的识别和提取研究提供了有效的方法。  相似文献   

10.
The operational land imager (OLI) is the latest instrument in the Landsat series of satellite imagery, which officially began normal operations on 30 May 2013. The OLI includes two bands that are not on the thematic mapper series of sensors aboard Landsat-5 and 7; a cirrus band and a coastal/aerosol band. This paper compares the classification and regression tree and the kernel-based extreme learning machine (KELM) for mapping crops in Hokkaido, Japan, using OLI data, except the cirrus band and the pan band. The OLI data acquired on 8 July 2013 was used for crop classification of beans, beets, grassland, maize, potatoes and winter wheat. The KELM algorithm performed better in this study and achieved overall accuracies of 90.1%. According to the Jeffries–Matusita (J–M) distances, the short wavelength infrared band provides the greater contribution (the highest value was observed for band 6 in OLI data).  相似文献   

11.
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.  相似文献   

12.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.  相似文献   

13.
The Regione del Veneto (Italy) is cooperating with the University of California, Santa Barbara and other researchers in Italy and the U.S.A. to develop a system of econometric crop production modeling. Five crops are to be included in this project: small grains (wheat and barley), corn, sugar beets, soybeans, orchards and vineyards. A critical part of the crop yield modeling process is the identification of crops using multispectral satellite data. This paper explores two strategies to improve crop classification accuracies: (1) use of ancillary data stored in digital format and (2) use of multitemporal data. Ancillary information stored on digital files were used in this research to remove (mask) non‐agricultural areas from satellite image data. Comparison between the classification of masked and unmasked images showed that improvement ranged from 3% to 26% depending on crop type. The multidate classification was performed by compiling an image of transformed spectral bands and three TM‐5 bands. The transformed bands were TM band 4 over TM band 3. Based on the work conducted in this study it is clear that crop type determination from satellite imagery is possible for small field agricultural areas such as those found in Italy.  相似文献   

14.
The adoption of new cropping practices such as integrated Crop-Livestock systems (iCL) aims at improving the land use sustainability of the agricultural sector in the Brazilian Amazon. The emergence of such integrated systems, based on crop and pasture rotations over and within years, challenges the remote sensing community who needs to implement accurate and efficient methods to process satellite image time series (SITS) in order to come up with a monitoring protocol. These methods generally include a SITS preprocessing step which can be time consuming. The aim of this study is to assess the importance of preprocessing operations such as temporal smoothing and computation of phenological metrics on the mapping of main cropping systems (i.e. pasture, single cropping, double cropping and iCL), with a special emphasis on the iCL class. The study area is located in the state of Mato Grosso, an important producer of agriculture commodities located in the Southern Brazilian Amazon. SITS were composed of a set of 16-day composites of MODIS Vegetation Indices (MOD13Q1 product) covering a one year period between 2014 and 2015. Two widely used classifiers, i.e. Random Forest (RF) and Support Vector Machine (SVM), were tested using five data sets issued from a same SITS but with different preprocessing levels: (i) raw NDVI; (ii) raw NDVI + raw EVI; (iii) smoothed NDVI; (iv) NDVI-derived phenometrics; (v) raw NDVI + phenometrics. Both RF and SVM classification results showed that the “raw NDVI + raw EVI” data set achieved the highest performance (RF OA = 0.96, RF Kappa = 0.94, SVM OA = 0.95, SVM Kappa = 0.93), followed closely by the “raw NDVI” and the “raw NDVI + phenometrics” datasets. The “NDVI-derived phenometrics” alone achieved the lowest accuracies (RF OA = 0.58 and SVM OA = 0.66). Considering that the implementation of preprocessing steps is computationally expensive and does not provide significant gains in terms of classification accuracy, we recommend to use raw vegetation indices for mapping cropping practices in Mato Grosso, including the integrated Crop-Livestock systems.  相似文献   

15.
Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.  相似文献   

16.
In this study, an attempt has been made to suggest crop diversification based on soil and weather requirements of different crops. State level spatial databases of various agro-physical parameters such as rainfall, soil texture, physiography and problem soil along with the agricultural area derived from remote sensing data were integrated using GIS. A raster based modelling approach was followed to arrive at suitable zones for practicing different cropping systems. The results showed that the south-western Punjab is suitable for low water requiring crops such as desi cotton, pearl millet, gram etc., where as north-eastern Punjab with high rainfall and excess drainage should practice maize based cropping system. Rice can be substituted by maize and other crops in Central Punjab, where water table is going down fast. Using this approach the area of rice based cropping system can be reduced from present 24.7 lakh ha to 19.6 lakh ha, thereby reducing the degradation of valuable land and water resources.  相似文献   

17.
Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial–temporal variability is a challenging task.We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain.The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.  相似文献   

18.
Due to its ability to penetrate the cloud, Synthetic Aperture Radar (SAR) has been a great resource for crop mapping. Previous research has verified the applicability of SAR imagery in object-oriented crop classification, however, speckle noise limits the generation of optimal segmentation. This paper proposed an innovative SAR-based maize mapping method supported by optical image, Gaofen-1 PMS, based segmentation, named as parcel-based SAR classification assisted by optical imagery-based segmentation (os-PSC). Polarimetric decomposition was applied to extract polarimetric parameters from multi-temporal RADARSAT-2 data. One Gaofen-1 image was then used for parcel extraction, which was the basic unit for SAR image analysis. The final step was a multi-step classification for final maize mapping including: the potential maize mask extraction, pure/mixed maize parcel division and an integrated maize map production. Results showed that the overall accuracy of the os-PSC method was 89.1%, higher than those of pixel-level classification and SAR-based segmentation methods. The comparison between optical- and SAR-based segmentation demonstrated that optical-based segmentation would be better at representing maize field boundaries than the SAR-based segmentation. Moreover, the parcel- and pixel-level integrated classification will be suitable for many agricultural systems with small landownership where inter-cropping is common. Through integrating advantages of the SAR and optical data, os-PSC shows promising potentials for crop mapping.  相似文献   

19.
The Phase 1 Survey is the most comprehensive and widely used national level map of semi-natural habitats in Wales. However, the survey was based largely on field survey and was conducted over several decades, before being completed in 1997. Given that resources for a repeat survey were limited, this study has used an object-orientated rule-based classification implemented within eCognition of multi-temporal satellite sensor data acquired between 2003 and 2006 to map semi-natural habitats and agricultural land across Wales, thereby allowing a progressive update of the Phase 1 Survey. The classification of objects to Phase 1 habitat classes was undertaken in two steps; firstly the landscape of Wales was divided into objects using orthorectified SPOT-5 High Resolution Geometric (HRG) reflectance data (10 m spatial resolution) and Land Parcel Information System (LPIS) boundaries. A rule-base was then developed to progressively discriminate and map the distribution of 105 sub-habitats across Wales based on time-series of SPOT HRG, Terra-1 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Indian Remote Sensing Satellite (IRS) LISS-3 data, derived datasets (e.g., vegetation indices, fractional images) and ancillary information (e.g., topography). The rules coupled knowledge of ecology and the information content of these remote sensing data using a combination of thresholds, Boolean operations and fuzzy membership functions. A second rule-base was then developed to translate the more detailed sub-habitat classification to Phase 1 habitat classes. Indicative accuracies of the revised Phase 1 mapping, based on comparisons with the later Phase 2 survey (for selected habitats), were >80% overall and typically between 70% and 90% for many classes. Through this exercise, Wales has become the first country in Europe to produce a national map of habitats (as opposed to land cover) through object-orientated classification of satellite sensor data. Furthermore, the approach can be adapted to allow continual monitoring of the extent and condition of habitats and agricultural land.  相似文献   

20.
Abstract

Multi‐temporal ERS‐1 SAR data acquired over a large agricultural region in West Bengal was used to classify kharif crops like rice, jute and sugarcane. Rice crop grown under lowland management practice showed a temporal characteristic. The dynamic range of backscatter was highest for this crop in temporal SAR data. This was used to classify rice using temporal SAR data. Such temporal character was not observed for the other study crops, which may be due to the difference in cultivation practice and crop calendar. Significant increase in backscatter from the ploughed fields was used to derive information on onset and duration of land preparations. Synergistic use of optical remote sensing data and SAR data increased the separability of rice crop from homesteads and permanent vegetation classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号