首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
本文提出了利用快速Hartley变换(FHT)计算Stokes公式的方法,这一算法最适合于用来计算实序列的积分变换,而快速Fourier变换(FFT)较适合于用来计算复序列的积分变换。计算Stokes公式只涉及实序列问题,用FHT计算Stokes公式比用FFT算法更有效。本文详细地描述了用FHΥ计算Stokes公式的算法,进行了数值计算,与相应的FFT计算结果作了比较。结果表明,两种算法可以得到相同的精度,但是,FHT的计算速度比FFT的计算速度快一倍以上,且所需要的内存空间只是后者的一半。  相似文献   

2.
一种消除stokes积分卷积化近似误差影响的有效方法   总被引:1,自引:0,他引:1  
在应用快速Hartly变换或快速Fourier变换计算Stokes积分公式时,总是先将Stokes公式化成卷积形式,然后用FHT或FFT完成卷积运算,从而避免了复杂费时的积分计算。但由于Stokes公式不严格满足卷积定义,欲将其化成卷积形式必须作一些近似。这种近虽能在一定精度范围满足要求,但对于高精度要求仍有不能允许的计算误差。本文建议采用球面坐标转换方法,能有效地消除无论是用FHT或FFT计算S  相似文献   

3.
Vening—Meinesz公式的球面卷积形式   总被引:4,自引:0,他引:4  
宁津生  晁定波 《测绘学报》1994,23(3):161-166
过去利用快速Fourier变换(FFT)或快速Hartley变换(FHT)技术计算垂线偏差是假设地球是一个平面。在此基础上导出的Vening-Meinesz公式平面卷积形式虽然在一定精度范围内可以满足要求,但会产生较大的近似误差。然而,Vening-Meinesz公式同样可以发展为由FHT技术计算的二维球面卷积公式。数值计算表明:在Δ(?)=10°,Δλ=13°(5′×5′平均重力异常)范围内,Vening-Meinesz球面卷积公式的计算结果与数值积分结果的均方差m_ξ=±0.03秒、m_η=±0.02秒,比平面卷积公式的计算结果与数值积分结果的均方差m_ξ=±0.14秒、m_η=±0.30秒有显著提高。  相似文献   

4.
关于Stokes公式的球面卷积和平面卷积的注记   总被引:2,自引:0,他引:2  
讨论了Stokes公式球面卷积和平面卷积形式的近似性和严密性问题,分析了Stokes函数球面卷积形式和平面卷积形式的关系,推导了其间的差值表达式,估算了最大差值及其对计算大地水准面差距的误差影响。同时指出,将顾及Stokes函数全项的平面卷积公式称为严密公式的提法,仅仅是相对仅顾及Stokes函数首项的简单平面卷积公式而言,认为更合理的提法应该是“高精度Stokes平面近似卷积公式”。理论分析表明,球面卷积不可能严格转化为等效的平面卷积。  相似文献   

5.
中国海域大地水准面和重力异常的确定   总被引:12,自引:1,他引:12  
从莫洛金斯基(Molodensky)等1960年给出的由垂线偏差计算大地水准面空域积分公式出发,导出了其相应谱域1维严密卷积和2维球面及平面卷积公式。由Topex/Poseidon,ERS 1/2及Geosat/GM,ERM测高资料求解的垂线偏差计算了我国海域及其邻区大地水准面,其中计算格网为2.5′×2.5′。为了检核,将测高垂线偏差由逆维宁 迈尼兹(Vening Meinesz)公式反演重力异常,与海上船测重力值进行了外部检核;同时还利用司托克斯(Stokes)公式,由上述反演的重力异常计算大地水准面高,与莫洛金斯基公式直接解得的相应结果进行比较作为内部检核。前者的中误差为±9mGal(1Gal=1cm/s2),后者为±0.025m。本文在积分计算中充分应用了2维平面坐标形式和1维卷积严格公式,并做了比较和自校核。  相似文献   

6.
提出了一种用于Stokes积分和Hotine积分直接离散求和的快速算法。该算法将积分核表达为计算点纬度、流动点纬度和两点间经度差的函数,充分利用核函数的对称性,相同纬度的所有计算点只需计算一组核函数,计算次数远少于普通离散求和。基于EGM2008地球重力位模型的模拟实验表明,快速算法的计算效率远高于普通算法,有效解决了离散求和计算速度太慢的数值问题,且保留了球面积分的特性,可取代一维FFT用于计算Stokes积分和Hotine积分。  相似文献   

7.
从快速 Hartley变换 (FHT)基本概念入手 ,给出了 Hotine核在平面近似、球面近似、Molodenskii近似下的反演模型。另对 FHT处理中所需的坐标转换以及边缘效应等问题加以讨论。同时 ,为了改善长波特性的重力场信息 ,利用 M阶次的参考重力场对上述 Molo-denskii模型进行了改化。  相似文献   

8.
本文通过对Hotine积分和Stokes积分进行比较,指出Hotine积分是一种更有利于确定高精度大地水准面的方法,同时还导出了计算Hotine积分中截断系数的递推公式以及高阶截断误差的近似估计公式。  相似文献   

9.
本文利用Topex/Poseidon卫星测高资料,从快速Hartley变换(FHT)基本概念入手,给出了Hotine公式在平面近似、球面近似、Molodenskii近似下,反演中国近海海洋重力的数学模型。另对FHT处理中所需的坐标转换以及边缘效应等问题进行了讨论。同时,为了改善长波特性的重力场信息,引入了M阶次的OSU91A参考重力场对上述Molodenskii模型进行了改化。  相似文献   

10.
本文讨论了用快速付里叶变换(FFT)由大地水准面高度数据反算重力异常数据,由此提出了用FFT实现物理大地测量过值问题类型转换这一思想,并与正交基函数法进行了比较,从而得出运用FFT这一方法能达到简化边值问题本身和运算步骤以及节省计算时间的目的。  相似文献   

11.
This paper presents a method for the computation of the Stokes for-mula using the Fast Hartley Transform(FHT)techniques.The algorithm is mostsuitable for the computation of real sequence transform,while the Fast FourierTransform(FFT)techniques are more suitable for the computaton of complex se-quence transform.A method of spherical coordinate transformation is presented inthis paper.By this method the errors,which are due to the approximate term inthe convolution of Stokes formula,can be effectively eliminated.Some numericaltests are given.By a comparison with both FFT techniques and numerical integra-tion method,the results show that the resulting values of geoidal undulations byFHT techniques are almost the same as by FFT techniques,and the computation-al speed of FHT techniques is about two times faster than that of FFT techniques.  相似文献   

12.
On the accurate numerical evaluation of geodetic convolution integrals   总被引:3,自引:2,他引:1  
In the numerical evaluation of geodetic convolution integrals, whether by quadrature or discrete/fast Fourier transform (D/FFT) techniques, the integration kernel is sometimes computed at the centre of the discretised grid cells. For singular kernels—a common case in physical geodesy—this approximation produces significant errors near the computation point, where the kernel changes rapidly across the cell. Rigorously, mean kernels across each whole cell are required. We present one numerical and one analytical method capable of providing estimates of mean kernels for convolution integrals. The numerical method is based on Gauss-Legendre quadrature (GLQ) as efficient integration technique. The analytical approach is based on kernel weighting factors, computed in planar approximation close to the computation point, and used to convert non-planar kernels from point to mean representation. A numerical study exemplifies the benefits of using mean kernels in Stokes’s integral. The method is validated using closed-loop tests based on the EGM2008 global gravity model, revealing that using mean kernels instead of point kernels reduces numerical integration errors by a factor of ~5 (at a grid-resolution of 10 arc min). Analytical mean kernel solutions are then derived for 14 other commonly used geodetic convolution integrals: Hotine, Eötvös, Green-Molodensky, tidal displacement, ocean tide loading, deflection-geoid, Vening-Meinesz, inverse Vening-Meinesz, inverse Stokes, inverse Hotine, terrain correction, primary indirect effect, Molodensky’s G1 term and the Poisson integral. We recommend that mean kernels be used to accurately evaluate geodetic convolution integrals, and the two methods presented here are effective and easy to implement.  相似文献   

13.
In the analyses of 2D real arrays, fast Hartley (FHT), fast T (FTT) and real-valued fast Fourier transforms are generally preferred in lieu of a complex fast Fourier transform due to the advantages of the former with respect to disk storage and computation time. Although the FHT and the FTT in one dimension are identical, they are different in two or more dimensions. Therefore, first, definitions and some properties of both transforms and the related 2D FHT and FTT algorithms are stated. After reviewing the 2D FHT and FTT solutions of Stokes' formula in planar approximation, 2D FHT and FTT methods are developed for geoid updating to incorporate additional gravity anomalies. The methods are applied for a test area which includes a 64×64 grid of 3×3 point gravity anomalies and geoid heights calculated from point masses. The geoids computed by 2D FHT and FTT are found to be identical. However, the RMS value of the differences between the computed and test geoid is ±15 mm. The numerical simulations indicate that the new methods of geoid updating are practical and accurate with considerable savings on storage requirements. Received: 15 February 1996; Accepted: 22 January 1997  相似文献   

14.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

15.
Geodetic surface integrals play an important role in the numerical solution of geodetic boundary-value problems. In many cases they can be evaluated using fast methods in the frequency domain (FFT). However, this is not possible in general, because the domain of integration may be non-trivial (as is the surface of the Earth), the kernel function may not be of convolution type, or the data distribution may be heterogeneous. Therefore, fast evaluation strategies are also required in the space domain. They are more difficult to design because only one property is left where a more or less fast evaluation strategy can be built upon: the potential type of the kernel function. Consequently, the idea is not to replace well-established frequency domain techniques, but to supplement them. Our approach to this problem goes in two directions: (1) we use advanced cubature methods where the integration nodes automatically densify in the vicinity of the evaluation points; (2) we use powerful computer hardware, namely MIMD computers with distributed memory. This enables us to evaluate geodetic surface integrals of any practical complexity in reasonable time and accuracy. This is shown in a numerical example. Received: 7 May 1996 / Accepted:17 March 1997  相似文献   

16.
The fast Fourier transform (FFT) and, recently, the fast Hartley transform (FHT) have been extensively used by geodesists for efficient geoid determination. For this kind of efficiency, data must be given on a regular grid and, consequently, a pre-processing step of interpolation is required when only point measurements are available. This paper presents a way of computing a grid of geoid undulations N without explicitly gridding the data. The method is applicable to all FFT or FHT techniques of geoid or terrain effects determination, and it works with planar as well as spherical formulas. This method can be used not only for, e.g., computing a grid of undulations from irregular gravity anomalies g but it also lends itself to other applications, such as the gridding of gravity anomalies and, since the contribution of each data point is computed individually, the update of N- or g-grids as soon as new point measurements become available. In the case that there are grid cells which contain no measurements, the results of gravity interpolation or geoid estimation can be drastically improved by incorporating into the procedure a frequency-domain interpolating function. In addition to numerical results obtained using a few simple interpolating functions, the paper presents briefly the mathematical formulas for recovering missing grid values and for transforming values from one grid to another which might be rotated and/or scaled with respect to the first one. The geodetic problems where these techniques may find applications are pointed out throughout the paper.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

17.
提出利用地面重力异常数据计算地面扰动位径向二阶梯度,将该梯度的积分表达式转换为卷积形式的谱表达式,便于应用FFT/FHT技术进行快速计算。这一将地面重力异常化为重力梯度的实用算法为将卫星重力梯度和航空重力梯度观测数据与地面重力数据的联合处理提供了一种有效途径。最后,以本文导出的数学模型为基础,给出了模型(WDM94)数据的试算结果并作了分析  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号