首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Climate change is expected to alter temperatures and precipitation patterns, affecting river flows and hence riparian corridors. In this context we have explored the potential evolution of riparian corridors under a dryness gradient of flow regimes associated with climate change in a Mediterranean river. We have applied an advanced bio‐hydromorphodynamic model incorporating interactions between hydro‐morphodynamics and vegetation. Five scenarios, representing drier conditions and more extreme events, and an additional reference scenario without climate change, have been designed and extended until the year 2100. The vegetation model assesses colonization, growth and mortality of Salicaceae species. We analysed the lower course of the Curueño River, a free flowing gravel bed river (NW Spain), as a representative case study of the Mediterranean region. Modelling results reveal that climate change will affect both channel morphology and riparian vegetation in terms of cover, age distribution and mortality. Reciprocal interactions between flow conditions and riparian species as bio‐engineers are predicted to promote channel narrowing, which becomes more pronounced as dryness increases. Reductions in seedling cover and increases in sapling and mature forest cover are predicted for all climate change scenarios compared with the reference scenario, and the suitable area for vegetation development declines and shifts towards lower floodplain elevations. Climate change also leads to younger vegetation becoming more subject to uprooting and flooding. The predicted reduction in suitable establishment areas and the narrowing of vegetated belts threatens the persistence of the current riparian community. This study highlights the usefulness of advanced bio‐hydromorphodynamic modelling for assessing climate change effects on fluvial landscapes. It also illustrates the need to consider climate change in river management to identify appropriate adaptation measures for riparian ecosystems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Both climate change and river rehabilitation projects induce changes in floodplain sedimentation. Notably along the lower River Rhine, the sediment deposition patterns and rates are subject to change. To assess the magnitude of these changes, we developed the MoCSED model, a floodplain sedimentation model within a geographical information system for the lower Rhine River. We based MoCSED on the ‘method of characteristics’ (MoC), a particle tracking method that minimizes numerical dispersion. We implemented the MoCSED model in the PCRaster dynamic modelling language. The model input comprises initial suspended sediment concentrations, water levels, flow velocities, and longitudinal and transverse dispersivities. We used a combination of the Krone and Chen concepts to calculate the subsequent sedimentation (SED routine). We compared the model results with sediment trap data for the Bemmel floodplain along the Dutch Waal River during the 2003 inundation. This comparison showed that MoCSED was able to simulate the pattern of sediment deposition. In addition, the model proved to be an improvement in comparison with a conventional raster‐based floodplain sedimentation model for the lower River Rhine. In future, MoCSED may serve well to study the impact of a changing discharge regime due to climate change and floodplain rehabilitation plans on deposition of sediments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
《国际泥沙研究》2016,(3):264-270
The functions of the diversion channel are usually disturbed by sediment erosion and deposition. Con-sidering the effects of unsaturated sediment flow and narrowed cross section the diversion channel is enormously eroded. The discharge capacity, however, is deteriorated for the local deposition which lessens the water depth to satisfy the minimum navigable flow rate. In this study, the alternative diversion channel with unsaturated sediment flow at Hanjiang River, China, was taken as an example. The impacts of bed morphology for flood events and normal flow conditions were analyzed. The results show that the consideration of bed morphology is essential to design the diversion channel. Even for the unsaturated and eroded channel, the local deposition can reduce the water depth and restrict the navigable requirement under normal flow conditions.  相似文献   

5.
The interaction of vegetation and flow in channels is important for understanding the influences of forces in channels and effects on erosion, sediment flux and deposition; it has implications for channel habitats, channel instability and restoration schemes. Methods are needed for calculating forces on plants and data are required on thresholds for plant destruction and survival. A simple method of calculating the effect of hydraulics on vegetation and its zonation within ephemeral channels is described. Detailed cross section surveys of channel morphology, vegetation and estimates of Manning's n are input into the software program WinXSPRO to calculate the hydraulics of flows across the channel for a given event or flow level, incorporating subdivision into zones of differing morphology and vegetation across the section. This was applied to a number of cross sections on ephemeral channels in SE Spain and typical roughness values for Mediterranean vegetation types in channels were assessed. The method is demonstrated with reference to two well‐documented floods in SE Spain, in September 1997 on the Torrealvilla and in October 2003 along the Salada. These flows led to the mortality of herbs, reed and smaller shrub species. Some damage to larger shrubs and trees occurred, but trees such as Tamarisk (Tamarix canariensis) were shown to withstand high forces. Some grasses were highly resistant to removal and induced sedimentation. Significant erosion was limited to areas with little vegetation covering the channel floor. Further quantification of resistance of vegetation to flows and upper threshold values for removal is continuing by relating calculated hydraulic conditions using the methods outlined to measurements of vegetation responses in events at monitoring sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Vegetation and soil properties and their associated changes through time and space affect the various stages of soil erosion. The island of Ishigaki in Okinawa Prefecture, Japan is of particular concern because of the propensity of the red‐soil‐dominated watersheds in the area to contribute substantial sediment discharge to adjacent coastal areas. This paper discusses the application of remote sensing techniques in the retrieval of vegetation and soil parameters necessary for the distributed soil‐loss modelling in small agricultural catchments and analyses the variation in erosional patterns and sediment distribution during rainfall events using numerical solutions of overland flow simulations and sediment continuity equations. To account for the spatial as well as temporal variability of selected parameters of the soil‐loss equations, a method is proposed to account for the variability of associated vegetation cover based on their spectral characteristics as captured by remotely sensed data. To allow for complete spatial integration, modelling the movement of sediment is accomplished under a loose‐coupled GIS computational framework. This study lends a theoretical support and empirical evidence to the role of vegetation as a potential agent for soil erosion control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The potential for flooding and sediment transport is greatly affected by river channel form and changes in land use. Therefore the modelling of channel morphology prior to canalization and of land‐use change is important with respect to the prediction of floods and sediment yield and their consequences. A combination of land‐use transformation maps and soil properties shows certain decision rules for the conversion of forest into arable or vice versa. The model proposed, from this study, was used to simulate possible past and/or future channel and land‐use patterns. Subsequently, the outcome of this simulation was used to assess the risk of flooding, sediment transport and soil‐erosion under different conditions. In this study, channel morphology prior to canalization and land‐use change in the Ishikari basin, Hokkaido, Japan, were analysed by comparing three scenarios using a physical based channel and slope model. The results indicate that pre‐canalization channel morphology has a significant impact on flood peak, but no significant effect on sediment yield. In contrast, land‐use change has a significant effect on soil eroded from hillslopes, but no significant effect on flooding for Ishikari basin. This study also illustrates the challenges that a simple model, such as a physical based channel and slope model, can simulate large‐scale river basin processes using fewer hydrological data resources. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
LINTRODUCTIONJinghongHydraulicPowerPlant,locatedintheload,erreachesofLanchangmyer,trib.ofMekong,isintheNorthOfJinghongCity.Thepowerstationisamultipurposehydro-junction,includingelectricpowergeneration,shipping,floodcontrol,cultivahonandwatersupply.SimaoPort,animportanttransportcenterinSimaoDistriCt,YunnanProvince,isabollt80kmaamsuPStreamofthedam.Anerthereservoirisimpounded,thewaterstagewillriseandagreatamountofsedimentwillbedepositedintheriverbedinevitably.Asaresult,itisverylikelyt…  相似文献   

11.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Dynamic interaction between river morphodynamics and vegetation affects river channel patterns and populations of riparian species. A range of numerical models exists to investigate the interaction between vegetation and morphodynamics. However, many of these models oversimplify either the morphodynamics or the vegetation dynamics, which hampers the development of predictive models for river management. We have developed a model coupling advanced morphodynamics and dynamic vegetation, which is innovative because it includes dynamic ecological processes and progressing vegetation characteristics as opposed to commonly used static vegetation without growth and mortality. Our objective is to understand and quantify the effects of vegetation‐type dependent settling, growth and mortality on the river pattern and morphodynamics of a meandering river. We compared several dynamic vegetation scenarios with different functional trait sets to reference scenarios without vegetation and with static vegetation without growth and mortality. We find distinct differences in morphodynamics and river morphology. The default dynamic vegetation scenario, based on two Salicaceae species, shows an active meandering behaviour, while the static vegetation scenario develops into a static, vegetation‐dominated state. The diverse vegetation patterns in the dynamic scenario reduce lateral migration, increase meander migration rate and create a smoother floodplain compared to the static scenario. Dynamic vegetation results in typical vegetation patterns, vegetation age distribution and river patterns as observed in the field. We show a quantitative interaction between vegetation and morphodynamics, where increasing vegetation cover decreases sediment transport rates. Furthermore, differences in vegetation colonization, density and survival create distinct patterns in river morphology, showing that vegetation properties and dynamics drive the formation of different river morphologies. Our model demonstrates the high sensitivity of channel morphodynamics to various species traits, an understanding which is required for floodplain and stream restoration and more realistic modelling of long‐term river development. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The impact of wastewater flow on the channel bed morphology was evaluated in four ephemeral streams in Israel and the Palestinian Territories: Nahal Og, Nahal Kidron, Nahal Qeult and Nahal Hebron. Channel changes before, during and after the halting of wastewater flow were monitored. The wastewater flow causes a shift from a dry ephemeral channel with intermittent floods to a continuous flow pattern similar to that of humid areas. Within a few months, nutrient‐rich wastewater flow leads to rapid development of vegetation along channel and bars. The colonization of part of the active channel by vegetation increases flow resistance as well as bank and bed stability, and limits sediment availability from bars and other sediment stores along the channels. In some cases the established vegetation covers the entire channel width and halts the transport of bed material along the channel. During low and medium size flood events, bars remain stable and the vegetation intact. Extreme events destroy the vegetation and activate the bars. The wastewater flow results in the development of new small bars, which are usually destroyed by flood flows. Due to the vegetation establishment, the active channel width decreases by up to 700 per cent. The deposition of fine sediment and organic material changed the sediment texture within the stable bar surface and the whole bed surface texture in Nahal Hebron. The recovery of Nahal Og after the halting of the wastewater flow was relatively fast; within two flood seasons the channel almost returned to pre‐wastewater characteristics. The results of the study could be used to indicate what would happen if wastewater flows were introduced along natural desert streams. Also, the results could be used to predict the consequences of vegetation removal as a result of human intervention within the active channel of humid streams. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
With riverine flooding set to be more frequent in many parts of the world as a result of climate change, the interactions between fluvial morphodynamics and riparian vegetation may depend in part on the sequence of flood events. This paper describes a laboratory study of the geomorphic adjustment of a braided river to sequences of floods across five different strengths of braidplain vegetation. By using alfalfa as a proxy for braidplain vegetation, the differing plant life stages were used to represent the varying strengths of biogeomorphic feedbacks across the floods. Boundary conditions were constrained by sets of experimental runs with both equilibrium sediment loads and deficit loads. Changes in bed topography were monitored and assessed using a detailed digital elevation model, digital imagery and continuous monitoring of the transported sediment. Results demonstrate that in absence of plant colonization, vegetation placed the rivers in a non-equilibrium condition, in which riparian vegetation encouraged the development of new channels, increased the system channel width and enhanced topographic irregularity, these effects being more noticeable during the low-flow periods. The morphodynamics was found to be less sensitive to variations in flood discharges as the vegetation influence (strength) increased from minimum to maximum, until vegetation began to die back and the impacts of flood sequences became yet again evident. Although the overall sediment transport rate was reduced under full-grown vegetation conditions, the presence of the mature plants across the braid bars resulted in the greatest channel scour depths. Results are considered in light of expected changes in flood frequency with climate and likely morphodynamic responses of river systems as a result.  相似文献   

15.
The alluvial cover in channels with non-alluvial beds is a major morphologic feature in these rivers and has important geomorphic and ecologic functions. Although controls on the extent of the alluvial cover have been previously researched, little is known about the role of channel meanders in shaping the three-dimensional morphology and bedload transport rates in these rivers. Flume experiments were conducted in a fixed-bed sinuous channel scaled from an engineered urban river. A fully graded sediment supply mixture was fed into the bare channel at rates ranging between 0.3 and 1.2 times the estimated channel capacity under constant discharge. The three-dimensional morphology and surface texture of the alluvial cover were captured using photogrammetry, and the sediment output was periodically measured and sieved. A stable alluvial cover was achieved under all sediment supply conditions that coincided with a sediment transport equilibrium. The sediment supply rate controlled the final areal extent, mass and volume of the alluvial cover, while cover developed as a periodic series of stable bars ‘fixed’ by the channel planform. The alluvial cover development followed consistent trajectories relative to angular position around bends but developed to a greater degree and higher elevation with increasing sediment supply. The stable cover extent had a logarithmic relationship with the relative sediment supply, while the final mass, volume and bar height had linear relationships. The final channel morphology was characterized by fine-textured point bars with flat tops and steep margins connected by coarse riffle features. The outside of banks between bend apexes remained bare, even at sediment supply conditions exceeding the channel capacity. The length of the exposed outer banks followed predictable linear relationships with the total cover extent. Insights from this study can provide guidance for the management of channels with non-alluvial boundaries and provide validation for models of sinuous bedrock channel abrasion. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
This work investigates wood dynamics in braided streams through physical modelling in a mobile bed laboratory flume, with the specific objective to characterize wood storage and turnover as a function of wood input rate and of wood element type. Three parallel channels (1.7 m wide, 10 m long) filled with uniform sand were used to reproduce braided networks with constant water discharge and sediment feeding. Wood dowels with and without simplified root wads were regularly added at the upstream end of each flume at different input rates, with a 1:2:3 ratio between the three flumes. Temporal evolution of wood deposition patterns and remobilization rates were monitored by a series of vertical images that permitted the recognition of individual logs. Results show that wood tends to disperse in generally small accumulations (< 5 logs), with higher spatial density on top of sediment bars, and is frequently remobilized due to the intense morphological changes. The amount of wood stored in the channel depends on log input rate through a non‐linear relationship, and input rates exceeding approximately 100 logs/hour determine a sharp change in wood dynamics, with higher storage volume and augmented formation of large jams (> 10 elements) that are less prone to remobilization. Presence of root wads seems to play a minor role in wood deposition, but it reduces the average travel distance of logs. Turnover rates of logs were similar in the three flumes, independently of wood input rate and largely resembling the turnover rate of exposed bars. For the simulated conditions, significant effects of wood on bed morphology were not observed, suggesting that interactions with fine sediments and living vegetation are crucial to form large, stable wood jams able to bring about relevant morphological changes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

18.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
小浪底水库于1999年运用以后,该河道经历了长时间持续冲刷过程.为掌握小浪底水库运用后黄河尾闾段洪水演进特点及河床冲淤规律,采用一维水沙数学模型研究是一条重要的途径.本研究首先采用浑水控制方程,建立了一维耦合水沙数学模型,并利用2003年利津-西河口段汛期实测水沙及汛前断面地形资料对该模型进行率定,计算的流量、水位及含沙量等过程与实测值吻合较好;然后采用2015年利津—汊3段汛期实测资料对该模型进行验证,结果显示水位与冲淤量计算值与实测值较为符合;最后基于2015年实测洪水过程,计算了若干组不同断面间距下的洪水演进及冲淤过程,分析了不同断面间距对沿程水位及河段冲淤量等计算结果的影响,结果表明:采用不同断面间距对水位计算结果影响较小,而对冲淤量计算结果会产生一定影响;在河段水沙及冲淤特性复杂的情况下,采用一维数学水沙模型计算时应考虑断面间距的选择.  相似文献   

20.
To be able to understand year-round river channel evolution both at present and in the future, the spatial variation of the flow characteristics and their sediment transport capabilities under ice cover need to be detected. As the measurements done through cross-sectional drill holes cover only a small portion of the river channel area, the numerical simulations give insight into the wider spatial horizontal variation of the flow characteristics. Therefore, we simulate the ice-covered flow with a hydrodynamic two-dimensional (2D) model in a meandering subarctic river (Pulmanki River, Finland) in mid-winter conditions and compare them to the pre-winter open-channel low flow situation. Based on the simulations, which are calibrated with reference measurements, we aim to detect (1) how ice-covered mid-winter flow characteristics vary spatially and (2) the erosion and sedimentation potential of the ice-covered flow compared to open-channel conditions. The 2D hydrodynamic model replicated the observed flow characteristics in both open-channel and ice-covered conditions. During both seasons, the greatest erosional forces locate in the shallow sections. The narrow, freely flowing channel area found in mid-winter cause the main differences in the spatial flow variation between seasons. Despite the causes of the horizontal recirculating flow structures being similar in both seasons, the structures formed in different locations depended on whether the river was open or ice covered. The critical thresholds for particle entrainment are exceeded more often in open-channel conditions than during ice-covered flow. The results indicate spatially extensive sediment transport in open-channel conditions, but that the spatial variability and differences in depositional and erosional locations increase in ice-covered conditions. Asymmetrical bends and straight reaches erode throughout the year, whereas symmetrical, smaller bends mainly erode in open-channel conditions and are prone to deposition in winter. The long ice-covered season can greatly affect the annual morphology of the submerged channel. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号