首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model's simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m = 0.75 and K = 4.63 × 10‐8 m‐0.5y‐1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment, where some threshold was reached very early in the catchment's incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m = 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The use of cosmogenic isotopes to determine surface exposure ages has grown rapidly in recent years. The extent to which cosmogenic nuclides can distinguish between mechanistic hypotheses of landscape evolution is an important issue in geomorphology. We present a case study to determine whether surface exposure dating techniques can elucidate the role knickpoint propagation plays in longitudinal profile evolution. Cosmogenically produced 10Be, 26Al, 36Cl, 3He and 21Ne were measured in olivines collected from 5·2 Ma basalt flows on Kauai, Hawaii. Several obstacles had to be overcome prior to the measurement of In situ-produced radionuclides, including removal of meteoric 10Be from the olivine grains. Discrepancies between the radionuclide and noble gas data may suggest limits for exposure dating. Approximate surface exposure ages calculated from the nuclide concentrations indicate that large boulders may remain in the Hawaiian valley below the knickpoint for hundreds of thousands of years. The ages of samples collected above the knickpoint are consistent with estimates of erosion based on the preservation of palaeosurfaces. Although the exposure ages can neither confirm nor reject the nickpoint hypothesis, boulder ages downstream of the knickpoint are consistent with a wave of incision passing upvalley. The long residence time off the coarse material in the valley bottom further suggests that knickpoint propagation beneath a boulder pile is necessary for incision of the bedrock underlying the boulders to occur. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
The stream tracer technique and transient storage models (TSMs) have become common tools in stream solute and hyporheic exchange studies. The expense and logistics associated with water sample collection and analysis often results in limited temporal resolution of stream tracer breakthrough curves (BTCs). Samples are often collected without a priori or real‐time knowledge of BTC information, which can result in poor sample coverage of the critical shoulder (initial rise) and tail (post‐steady state fall) of the BTC. We illustrate the use of specific conductance (SC) measurements as a surrogate for conservative dissolved tracer (Br) samples. The advantages of collecting SC data for use in the TSM are (1) cost, (2) ease of data collection, and (3) well‐defined breakthrough curves, which strengthen TSM parameter optimization. This method is based on developing an ion concentration (IC)–SC relationship from limited discrete tracer solute samples. SC data can be collected on a more frequent basis at no additional analysis cost. TSM simulations can then be run for the conservative tracer data derived from SC breakthrough curves and the IC–SC relationship. This technique was tested in a 120 m reach of stream (2–60 m subreaches) in the Maimai M15 catchment, New Zealand during baseflow recession. Dissolved LiBr was injected for 12·92 h, with Br as the conservative ion of interest. Four TSM simulations using the OTIS model are optimized using UCODE to fit (1) Br data derived from the Br–SC relationship (n = 1307 observations at each of two stream sampling sites), (2) all stream Br data collected (n = 58 in upper reach, n = 60 in lower reach), (3) half of the stream Br data collected, and (4) 20 stream Br samples from each site. No two simulations resulted in the same optimal parameter values. Results suggest that the greater the frequency of observations, the greater the confidence in estimated parameter values. Br–SC simulations resulted in the best overall model fits to the data, with the lowest calculated error variance of 6·37, narrowest 95% parameter estimate confidence intervals, and the highest correlation coefficient of 0·99 942, among the four simulations. This is largely due to the improved representation of the shoulder and tail of the BTC with this method. The IC–SC correlation method is robust in situations in which (1) changes in background SC data can be accounted for, and (2) the data used to define the IC–SC relationship are representative of the range of data collected. This method provides more efficient sample analysis, improved data resolution, and improved model results compared to the alternative stream tracer data gathering methods presented. Additionally, we describe a new parameterization of the cross‐sectional area of the stream during flow recession, as a function of discharge, based on a stream hydraulic geometry relationship. This variant of the OTIS model provides a more realistic representation of stream dynamics during unsteady discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The stream power incision model (SPIM) is a cornerstone of quantitative geomorphology. It states that river incision rate is the product of drainage area and channel slope raised to the power exponents m and n, respectively. It is widely used to predict patterns of deformation from channel long profile inversion or to model knickpoint migration and landscape evolution. Numerous studies have attempted to test its applicability with mixed results prompting the question of its validity. This paper synthesizes these results, highlights the SPIM deficiencies, and offers new insights into the role of incision thresholds and channel width. By reviewing quantitative data on incising rivers, I first propose six sets of field evidence that any long‐term incision model should be able to predict. This analysis highlights several inconsistencies of the standard SPIM. Next, I discuss the methods used to construct physics‐based long‐term incision laws. I demonstrate that all published incising river datasets away from knickpoints or knickzones are in a regime dominated by threshold effects requiring an explicit upscaling of flood stochasticity neglected in the standard SPIM and other incision models. Using threshold‐stochastic simulations with dynamic width, I document the existence of composite transient dynamics where knickpoint propagation locally obeys a linear SPIM (n=1) while other part of the river obey a non‐linear SPIM (n>1). The threshold‐stochastic SPIM resolves some inconsistencies of the standard SPIM and matches steady‐state field evidence when width is not sensitive to incision rate. However it fails to predict the scaling of slope with incision rate for cases where width decreases with incision rate. Recent proposed models of dynamic width cannot resolve these deficiencies. An explicit upscaling of sediment flux and threshold‐stochastic effects combined with dynamic width should take us beyond the SPIM which is shown here to have a narrow range of validity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The hydrological catchment model known as TOPMODEL, in its original and most widely‐used form, assumed that subsurface transmissivity decreases exponentially as subsurface water storage decreases. It has been shown that this leads to recession curves of discharge Q that take the form ? dQ/dt = aQb, where a is a constant and b = 2. In order to reproduce a wider range of recession, or base flow, behaviour, a power function for transmissivity was subsequently incorporated into TOPMODEL as an alternative to the exponential function. This was claimed to extend the realistic values of b to range from 1 to 2, inclusive. We show here that the power transmissivity function can also generate values of b > 2 without making unrealistic assumptions (beyond those arguably made in the original TOPMODEL), thus generating recession curves consistent with catchments showing prolonged base flow. Furthermore, the power transmissivity function can generate recession curves that steepen with time (b < 1). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

9.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

10.
Glacial‐lake outburst floods (GLOFs) on 3 September 1977 and 4 August 1985 dramatically modified channels and valleys in the Mount Everest region of Nepal by eroding, transporting, and depositing large quantities of sediment for tens of kilometres along the flood routes. The GLOF discharges were 7 to 60 times greater than normal floods derived from snowmelt runoff, glacier meltwater, and monsoonal precipitation (referred to as seasonal high flow floods, SHFFs). Specific stream power values ranged from as low as 1900 W m?2 in wide, low‐gradient valley segments to as high as 51 700 W m?2 in narrow, high‐gradient valley segments bounded by bedrock. Along the upper 16 km of the GLOF routes, the reach‐averaged specific stream power of the GLOFs was 3·2 to 8·0 times greater than the reach‐averaged specific stream power of the SHFFs. The greatest geomorphic change occurred along the upper 10 to 16 km of the GLOF routes, where the ratio between the GLOF specific stream power and the SHFF specific stream power was the greatest, there was an abundant supply of sediment, and channel/valley boundaries consisted primarily of unconsolidated sediment. Below 11 to 16 km from the source area, the geomorphic effects of the GLOFs were reduced because of the lower specific stream power ratio between the GLOFs and SHFFs, more resistant bedrock flow boundaries, reduced sediment supply, and the occurrence of past GLOFs. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Dissolved organic carbon (DOC) was measured at four or eight hour intervals between mid-1989 and mid-1991 in two catchments in west central Scotland. The experimental catchment had been recently clear-felled and the control remained under forest. The amount of DOC varied during individual storm events following the stream hydro-graph. Maximum variations were found in the summer half-year and in the clear-felled catchment. There was also evidence of the exhaustion of DOC in the later events of a sequence. Differences between the catchments were related to catchment characteristics and to land-use change. The reduced magnitude of variation in DOC with discharge in the control stream was due to the influence of a wetland area through which the stream flowed. The mean DOC concentrations were similar in the two streams and annual exports were 15 g m?2 from the control and 16g m?2 from the felled catchment. The stream draining the clear-felled catchment had greater high flow DOC concentrations in the summer half-year, probably due to the effect of greater mean summer temperatures on DOC release and of the greater supply of organic debris in the stream channel.  相似文献   

12.
A series of controlled laboratory experiments were conducted in order to obtain precise data on the hydraulic and sediment transport conditions during rill formation. Tests were carried out using a crusting-prone binary mixed soil in a 15 m long flume at an average slope of 0·087 under simulated rainfall. Rainfall intensities varied from 30–35 mm h?1 and developed about 70 per cent of the kinetic energy of natural rainfall of similar intensity. Runoff and sediment discharge measured at the downstream weir were strongly influenced by rill forming processes. Essentially, rill incision reduced runoff discharge as a result of increased percolation in rill channels but increased sediment discharge. Secondary entrainment processes, such as bank collapse, also increased sediment discharge at the weir. Knickpoint bifurcation and colluvial deposition, however, decreased sediment discharge. Rills always developed through the formation of a knickpoint. The critical condition for knickpoint initiation was the development of supercritical flow and waves which mould and incise the bed. Prior smoothing of the soil surface by entrainment and redistribution of sediment facilitated supercritical flow. Statistical analysis showed that hydraulic and sediment transport conditions differed significantly in rilled and unrilled flows. The relationship between sediment discharge, rill erosion, and flow hydraulics was found to be nonlinear, conforming to a standard power function in the form y = axb. Rills were also associated with significantly increased sediment transport capacities. However, rill initiation was not clearly defined by any specific hydraulic threshold. Instead, rilled and unrilled flows were separated by zones of transition within which both types of flow occur.  相似文献   

13.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   

14.
Estimation of the recession rate of waterfalls is a crucial issue in bedrock river erosion because waterfall recession can cause a major impact on bedrock incision, especially when waterfall recession rates are high. Areas of active volcanoes are often characterized by many waterfalls in the volcanic edifice. This study examines recession rates of waterfalls in welded Aso‐1 ignimbrite from the Aso volcano in southwestern Japan using an empirical equation, which comprises a force/resistance index composed of measurable geomorphic parameters. The estimated recession rates are on the order of 0·01–0·07 m a?1. The estimated rates are then validated by examining the duration and distance of their recession. The duration of waterfall recession is derived from eruptive ages of the Aso ignimbrites, giving waterfall recession distances of approximately 10 km. Although the original locations of the waterfalls suggested by the recession distances exceed the downstream limit of the present Aso‐1 ignimbrite remnants along valley floors, features of the surrounding topography are consistent with these localities being where the waterfalls formed. The use of an equation to estimate recession rates is therefore considered to be valid and practical. The contrast between the highly dissected landforms downstream of the present waterfalls and the gentle landscapes upstream of the waterfalls suggests that the rapid recession of the waterfalls is the major cause of post‐eruptive fluvial erosion into ignimbrites. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The long‐term and current volumes of sediment exported from stream banks were calculated as potential sources of sediment in a large pond located at the catchment outlet of a small agricultural lowland basin strongly affected by anthropogenic pressure in France. Bank erosion was measured over a short period using a network of erosion pins along a small stream (1400 m long) to quantify the material exported during a single winter (2012–2013). The material exported by this same stream over the last 69 years was quantified using an original approach involving the comparison of a compilation of three‐dimensional historical stream redesign plans that date back to 1944 with the state of the banks in 2013 (differential global positioning system and LiDAR data). The results suggest that a global trend of material loss along the stream banks monitored by erosion pins, with an average erosion rate of 17.7 mm year?1 and an average volume of exported material of 75 t km?1. Over 69 years, this same stream exported an average of 36 t km?1 year?1, and the average loss of material from the banks throughout the whole catchment was estimated to be 14 t km?1 year?1. The contribution of bank material to the filling of the pond over the last 10 years is between 46% and 52% based on an extrapolation of erosion pin dynamics or between 27% and 30% based on the comparison of LiDAR data to the average historical profile extrapolated for the catchment. These results suggest that bank erosion represents a major source of sediment in degraded waters in traditionally understudied agricultural lowland catchments, where anthropogenic pressures are high.  相似文献   

16.
The rate of blanket peat erosion was measured at an upland site in central Wales during the 1983-1984 drought years. Erosion pins, a peat surface sediment trap, and sediment sampling in the effluent stream, were used to estimate the rate of peat surface recession and the rate of organic sediment loss from the catchment. An overall rate of surface recession of 16 mm y?1 on exposed peat faces was recorded; this differed between faces of different aspects, with the greatest recession on southwest faces. Eroding peat surfaces exhibited maximum recession during the summer, but the peat surface sediment trap indicated that the highest rates of sediment loss from peat faces due to rain wash occurred during the autumn and early winter. Stream sediment sampling showed that the yield of organic sediment from the catchment was 34·4 t km?2 yr?1, with greatest losses also during the autumn and early winter. The evidence suggested that the surface recession, as measured on erosion pins, included a ‘wastage’ or shrinkage component, which possibly accounted for as much as 80 per cent of the apparent loss. Direct and circumstantial evidence suggested that peat wastage during the summer months was the most important agent of surface recession in the study period, which encompassed the two dry summers. Desiccation provided available sediment during the autumn, but organic sediment supply became limited as the winter progressed, despite the occurrence of frost heave.  相似文献   

17.
The Manning equation is one of the most widely used formulae for calculating the velocity of shallow overland flow in hydrological and erosion models. Precise estimation of the Manning's friction coefficient (n) is critical to determining overland flow and soil erosion processes. Few studies have been conducted to quantify the effects of sediment load on Manning's n on steep slopes. This study was conducted to investigate the potential effects of sediment load on Manning's n in a flume with a fixed bed, under wide ranges of hydraulics and sediment loads. Slope gradient varied from 8·7 to 34·2%, unit flow rate from 0·66 to 5·26 × 10?3 m2 s?1, and sediment load from 0 to 6·95 kg m?1 s?1. The Reynolds number ranged from 350 to 5899. Results showed that Manning's n varied in both sediment‐free and sediment‐laden flows ranging from 0·012 to 0·055. The apparent Manning's coefficients of sediment‐laden flow were much greater than those of sediment‐free flow. The mean Manning coefficient of sediment‐laden flow was 51·27% greater than the mean value of sediment‐free flow. For sediment‐laden flow, Manning's n could be estimated with a power function of unit flow discharge and sediment content. Further studies are needed to quantify the potential effects of sediment load on the Manning's n on erodible beds and in fields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Upland forested catchments in the Appalachian Plateau region receive among the greatest rates of atmospheric sulphur (S) deposition in the eastern USA, although coal mines and S‐bearing minerals in bedrock may also contribute to stream acidity in this region. Watershed mass balance and stable S isotopic values (δ34S) of sulphate (SO42?) were used to assess the contributions to stream SO42? from atmospheric and lithogenic sources at Yellow Creek (YC), a headwater catchment on the Appalachian Plateau in West Virginia. Oxygen isotopic values (δ18O) of water were used to study catchment hydrology. Stream output of SO42? was c. 60% of atmospheric S deposition during a relatively dry year, whereas atmospheric S input was nearly balanced by stream output during a year with above normal amounts of precipitation. The temporal patterns and values of δ34S were similar between bulk precipitation and stream water at two upper elevation sites. At the lowest elevation site, stream δ34S values were similar to bulk precipitation values during the dormant season but were slightly lower than precipitation during the low‐flow summer, probably as the result of a greater proportion of stream water being derived from deep hydrological flowpaths that have contacted S‐bearing minerals with low δ34S values in coal seams. Stream δ34S values at YC were significantly higher than at Coal Run, a catchment containing abandoned coal prospects and having a greater amount of S‐bearing minerals than YC. Results suggested that lithogenic S is a relatively minor source and that atmospheric deposition is the principal source of stream SO42?, and thus stream acidity, at YC. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Megagrooves are kilometre‐scale linear topographic lows carved in bedrock, separated by ridges, typically in areas of largely devoid of till. They have been reported from several areas covered by Pleistocene glaciations, such as Canadian Northwest (NW) Territories, Michigan and NW Scotland. Here we report two previously undocumented megagroove fields from Ungava, Canada, and northern England, and present new analyses of the megagrooves from NW Scotland. This paper seeks to determine the nature of the lithological and structural controls on the occurrence and formation of megagrooves. Analysis of both geomorphological and bedrock properties shows that megagrooves are generally:
  1. confined to well stratified or layered bedrock, such as (meta)sedimentary rocks with closely spaced joints, and tend not to occur on massive rocks such as gneiss or granite, or thick‐bedded sedimentary rocks;
  2. subparallel to palaeo‐ice flow and the strike of the strata; and tend not to occur where palaeo‐ice flow is at high angles to the strike of strata;
  3. produced by significant glacial erosion by sustained unidirectional ice flow.
Detailed analysis of megagrooves in NW Scotland shows that neither glacio‐fluvial erosion, nor differential abrasion was the dominant mechanism of formation. A mechanism, here termed ‘lateral plucking’, is suggested that involves block plucking on rock steps parallel to ice flow. Removal of joint‐bounded blocks from such rock steps involves a component of rotation along a vertical axis. Block removal may be enhanced by a direct component of shear stress onto the vertical stoss sides. The lateral plucking mechanism results in horizontal erosion at right angles to the ice flow, and enhances the groove/ridge topography. Megagrooves are potentially useful as palaeo‐ice flow indicators in areas devoid of till, and can thus complement the palaeo‐ice stream datasets which are presently largely based on soft‐sediment landform studies. British Geological Survey © NERC 2011  相似文献   

20.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号