首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The Lower Cambrian on the Yangtze Platform in South China (internationally equivalent to the Nerreneuvian and 2nd series of the Cambrian) is valuable for understanding the early evolution of life, the global biogeochemical circles, and the major changes of the ocean. In particular, a precise radiometric calibration of the Lower Cambrian of this region is a critical realm in its multidisciplinary studies. A SHRIMP U-Pb geochronology study of the K-bentonite in the topmost Laobao Formation at the Pingyin section, Guizhou, South China yielded an age of 536±5 Ma (MSWD = 0.75), suggesting that the K-bentonite here can be correlated with the intensely studied K-bentonite within the middle Zhongyicun Member (Bed 5) of the Zhujiaqing Formation at the Meishucun section in Yunnan. Such a regional correlation result reveals that the Bed 5 K-bentonite also extends into deeper-water environments rather than being deposited merely in the shallow platform interior of the Yangtze Platform. The age of the K-bentonite at the Pingyin section also implies that its overlying polymetallic Ni-Mo layer should be younger than 536±5 Ma. Hence the previous placement of the Precambrian/Cambrian boundary at this layer is inappropriate. Combined with the results of stratigraphic correlations, it is suggested that the K-bentonites in the middle Zhongyicun Member of the Zhujiaqing Formation (or the equivalents) and the base of the Shiyantou Formation (or its equivalents), together with the polymetallic Ni-Mo layer, serve as three important marker beds. Their self-consistent radiometric ages have established an improved geochronologic framework for the Lower Cambrian in South China.  相似文献   

2.
LA-ICPMS zircon U-Pb dating has been greatly advanced and widely applied in the past decade because it is a cheap and fast technique.The internal error of LA-ICPMS zircon U-Pb dating can be better than 1%,but reproducibility(accuracy)is relatively poor.In order to quantitatively assess the accuracy of this technique,zircons from two dioritic rocks,a Mesozoic dioritic microgranular enclave(FS06)and a Neoproterozoic diorite(WC09-32),were dated independently in eight laboratories using SIMS and LA-ICPMS.Results of three SIMS analyses on FS06 and WC09-2 are indistinguishable within error and give a best estimate of the crystallization age of 132.2 and 760.5 Ma(reproducibility is~1%,2RSD),respectively.Zircon U-Pb ages determined by LA-ICPMS in six laboratories vary from 128.3±1.0 to 135.0±0.9 Ma(2SE)for FS06 and from 742.9±3.1 to777.8±4.7 Ma(2SE)for WC09-32,suggesting a reproducibility of~4%(2RSD).Uncertainty produced during LA-ICPMS zircon U-Pb analyses comes from multiple sources,including uncertainty in the isotopic ratio measurements,uncertainty in the fractionation factor calculation using an external standard,uncertainty in the age determination as a result of common lead correction,age uncertainty of the external standards and uncertainty in the data reduction.Result of our study suggests that the uncertainty of LA-ICPMS zircon U-Pb dating is approximately 4%(2RSD).The uncertainty in age determination must be considered in order to interpret LA-ICPMS zircon U-Pb data rationally.  相似文献   

3.
Baogutu copper deposit in Western Junggar area is a mesoscopic porphyry deposit found in recent years. Study on its geochronology will help further understand ore genesis and regional ore-forming pattern. A series of small quartz-diorite and granodiorite stocks outcrop at Baogutu area, numbered I―X according to their size. A detailed exploration on Number V stock confirmed it as a mesoscopic scale copper deposit, and various exploration work has been carried out on other stocks with ore-forming evidence. Th...  相似文献   

4.
The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North Section, which is the upper most "golden spike" of the Ordovician. However, this "golden spike" is lack of reliable geochronology data. This article gives a sensitive high resolution ion microprobe (SHRIMPII) zircon U-Pb dating for a K-bentonite sample from the Kuany-inchiao Bed in the Wangjiawan North Section. The age of the K-bentonite sample is 443.2±1.6 Ma, that is to say, the isotopic age of the uppermost of Hirnantian Stage, the point of Ordovician-Silurian boundary, should be near to, but slightly younger than 443.2±1.6 Ma. This age is identical to the Ordovi-cian-Silurian boundary age 443.7±1.5 Ma as declared by International Commission on Stratigraphy (ICS). So, this research provides some good geochronlogical data for the Hirnantian Stage and the Ordovician-Silurian boundary as well as the global correlation.  相似文献   

5.
We report an imaging method of zircon U-Pb dating with NanoSIMS 50 L, which overcomes the significant U-Pb fractionation as the pit was sputtered deeper during conventional spot mode analysis and can be applied to irregular small grains or heterogeneous areas of zircon. The U-Pb and Pb-Pb ages can be acquired simultaneously for 2 μm×2 μm(for small grains) or 1 μm×9 μm(for zoned grains), together with Zr, Y and other trace elements distributions. Using zircon M257 as standard, the U-Pb ages of other zircon standards, including Qinghu, Plesovice, Temora and 91500, were measured to(2σ) as158.8±0.8, 335.9±3.4, 412.0±12 and 1067±12 Ma, respectively, consistent with the recommended values within the analytical uncertainties. Tiny zircon grains in the impact melt breccia of the lunar meteorite SaU 169 were also measured in this study,with a Pb-Pb age of 3912±14 Ma and a U-Pb age of 3917±17 Ma, similar to previous results reported for the same meteorite.The imaging method was also applied to determine U-Pb age of the thin overgrowth rims of Longtan metamorphic zircon, with a Pb-Pb age of 1933±27 Ma and a U-Pb age of 1935±25 Ma, clearly distinct from the Pb-Pb age of 2098±61 Ma and the U-Pb age of 2054±40 Ma for detrital cores.  相似文献   

6.
~~Metamorphic zircon from Xindian eclogite,Dabie Terrain: U-Pb age and oxygen isotope composition@E. Deloule$CRPG-CNRS Nancy,54501,France1. Vavra, G, Gebauer. D., Schmid. R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Tri-assic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122:337-358 2. Vavra, G, Schmid, R., Gebauer, D., Internal morphology, ha…  相似文献   

7.
A great deal of practical data in recent years have proved that the East Kunlun orogenic belt and even the China central orogenic belt are complex orogenic belts that underwent polycycle orogenic evolvement[1―7]. Each orogenic cycle has left a compositional print, the multi-period ophiolites[4―6] and various types of tec-tono-magmatic production in the same orogenic belt. There is a suite of shallow metamorphic volcanic rocks in the Nuomuhong area in the east part of the East Kunlun orogen…  相似文献   

8.
The Upper Cretaceous Himenoura Group in the Amakusa‐Kamishima Island area, southwest Japan is subdivided into the Hinoshima and Amura Formations. In order to determine the numerical depositional age of the formations, zircon U–Pb ages were investigated using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) for acidic tuff samples from the lower part of the Hinoshima Formation and the upper part of the Amura Formation. Although the two samples contain some accidental zircons, the samples have a definite youngest age cluster and their weighted mean ages are 85.4 ± 1.3 and 81.5 ± 1.1 Ma, respectively (errors are 95 % confidence interval). These age data indicate that the Himenoura Group in the Amakusa‐Kamishima Island area was deposited mainly in the early Santonian to early Campanian which is consistent with biostratigraphic ages. Additionally, zircon age distributions of the two tuff samples from the upper part of the Hinoshima Formation do not show a distinct youngest peak of eruption age but characteristics of detrital zircons suggestive of maximum depositional age of the host sediments. These results demonstrate that the mean age of the youngest zircon age cluster of a tuff sample does not always indicate depositional age of the tuff, and statistical evaluation of age data is effective to determine depositional age of a tuff bed using zircon U–Pb ages.  相似文献   

9.
Here we report an integrated study of zircon U-Pb age and Hf isotope composition for a gneiss sample from the Kongling terrain in the Yangtze Craton. CL imaging reveals that most zircons are magmatic, and a few of them have thin metamorphic rims. The magmatic zircons gave a weighted mean U-Pb age of 3218±13 Ma, indicating the gneiss is the oldest basement rock in the Yangtze Craton found to date. They have εHf(t) value of -2.33±0.51,and two-stage Hf model age of 3679±49 Ma,indicating that the gneiss was der...  相似文献   

10.
We present new high-precision 40Ar/39Ar ages on feldspar and biotite separates to establish the age, duration and extent of the larger Siberian Traps volcanic province. Samples include basalts and gabbros from Noril'sk, the Lower Tunguska area on the Siberian craton, the Taimyr Peninsula, the Kuznetsk Basin, Vorkuta in the Polar Urals, and from Chelyabinsk in the southern Urals. Most of the ages, except for those from Chelyabinsk, are indistinguishable from those found at Noril'sk. Cessation of activity at Noril'sk is constrained by a 40Ar/39Ar age of 250.3 ± 1.1 Ma for the uppermost Kumginsky Suite.The new 40Ar/39Ar data confirm that the bulk of Siberian volcanism occurred at 250 Ma during a period of less than 2 Ma, extending over an area of up to 5 million km2. The resolution of the data allows us to confidently conclude that the main stage of volcanism either immediately predates, or is synchronous with, the end-Permian mass extinction, further strengthening an association between volcanism and the end-Permian crisis. A sanidine age of 249.25 ± 0.14 Ma from Bed 28 tuff at the global section and stratotype at Meishan, China, allows us to bracket the P–Tr boundary to 0.58 ± 0.21 myr, and enables a direct comparison between the 40Ar/39Ar age of the Traps and the Permo–Triassic boundary section.Younger ages (243 Ma) obtained for basalts from Chelyabinsk indicate that volcanism in at least the southern part of the province continued into the Triassic.  相似文献   

11.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzonitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (∼230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of development of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

12.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

13.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

14.
Tephrochronology is one of the most effective ways to correlate and date Quaternary deposits across large distances. However, it can be challenging to obtain direct ages on tephra beds when they are beyond the limit of radiocarbon dating, do not contain mineral phases suitable for 40K-40Ar (or 40Ar/39Ar) dating, or suitable glass shards for fission-track dating are not available. Zircon U-Pb dating by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an emerging technique for dating young (<1 Ma) tephra. Here, we demonstrate that LA-ICP-MS zircon U-Pb dating can produce reliable ages for key tephra beds found in Yukon and Alaska. We assessed five different techniques for calculating tephra maximum depositional ages from zircon U-Pb ages for eight tephra beds. Our preferred zircon U-Pb ages (reported with 2σ uncertainties), based on a Bayesian model for calculating maximum depositional ages, are broadly consistent with previously established chronology constructed from stratigraphy, paleomagnetism, and/or glass fission track and 40Ar/39Ar ages: Biederman tephra (178 ± 17 ka), HP tephra (680 ± 47 ka), Gold Run tephra (688 ± 44 ka), Flat Creek tephra (708 ± 43 ka), PA tephra (1.92 ± 0.06 Ma), Quartz Creek tephra (2.62 ± 0.08 Ma), Lost Chicken tephra (3.14 ± 0.07 Ma), and GI tephra (542 ± 64 ka). We also present newly revised glass fission-track and 40Ar/39Ar ages recalculated from previous determinations using updated ages for the Moldavite tektite and Fish Canyon Tuff standards, and updated K decay constants. For Pleistocene age zircon crystals, corrections for 230Th disequilibrium and common-Pb are significant and must be treated with caution. Similarly, apparent tephra ages are sensitive to the choice of method used to calculate a maximum depositional age from the assemblage of individual crystallization ages. This study demonstrates that LA-ICP-MS zircon U-Pb dating can be successfully applied to numerous Pliocene-Pleistocene Alaskan-Yukon tephra, providing confidence in applying this method to other stratigraphically important tephra in the region.  相似文献   

15.
Integrated zircon U-Pb dating and whole rock geochemical analyses have been carried out for two typical S-and I-type granitoids in the north Qinling. Zircon dating by SIMS of the Piaochi S-type grani- toids yields an emplacement age of 495±6 Ma. The granitoids show whole-rock εNd(t)=-8.2--8.8, zircon εHf(t)=-6―-39. The Huichizi I-type granitoids have emplacement ages of 421±27 Ma and 434±7 Ma es- tablished by LA-ICP-MS and SIMS methods, respectively. Their whole-rock εNd(t)=-0.9-0.9 and zircon εHf(t)=-11-8....  相似文献   

16.
Organic-rich calcite laminated with gypsum in the evaporitic, non-fossiliferous Castile Formation of the Delaware Basin, southwest USA, yields a Total Pb/U isochron age of 251.5±2.8 Ma (MSWD=1.3). The Castile Formation is almost certainly Late Permian based on its 87Sr/86Sr value of 0.706923, identical to the distinct minimum in the late Permian Sr curve. In this paper we explore the potential for using U-Pb calcite ages to date traditionally undatable sections and show how this southern-midcontinent USA (far west Texas and southeast New Mexico) deposit can be correlated to the type section in China. We accept that diagenetic alteration can bias U-Pb results, but the data set we present shows no evidence for such alteration. Clearly with alteration the age we present would represent a minimum age for the Castile Formation. If the age actually dates the Castile Formation then it requires the Permian-Triassic boundary to be younger than 251.5±2.8 Ma.  相似文献   

17.
Jianshangou Bed of the Yixian Formation in West Liaoning,China   总被引:4,自引:0,他引:4  
The Jianshangou fossil locality was first found byChang Zhenglu and his colleagures in 1962, now thearea of Jianshangou, Sihetun and Huangbanjigou be-comes famous all over the world for its yielding feath-ered dinosaurs, Confuciusornis and Archaefructus. Thename of Jianshangou Bed was proposed by the firstauthor of present paper as an informal suggesting unitduring the research on Jehol fossils of western Liaon-ing in 1963 and 1964. The unit was named then asJianshan Bed[1], indicating th…  相似文献   

18.
Integrated study of rock assemblage, tectonic setting, geochemical feature, fossil contained and isotopic geochronology on the metamorphic mixed bodies, exposed in the Jinshajiang suture zone, suggests that one informal lithostratigraphic unit, the Eaqing Complex, and three tectono-stratigraphic units, the Jinshajiang ophiolitic melange, the Gajinxueshan Group and the Zhongxinrong Group, can be recognized there. It is first pointed out that the redefined Eaqing Complex might represent the Meso- to Neo-Proterozoic remnant metamorphic basement or mi-crocontinental fragment in the Jinshajiang area. The original rocks of it should be older than (1627 ±192) Ma based on the geochronological study. The zircon U-Pb age of plagiogranites within the Jinshajiang ophiolitic assemblage is dated for the first time at (294 ± 3) Ma and (340 ± 3) Ma respectively. The Jinshajiang ophiolite is approximately equivalent to the Ailaoshan ophiolite in the formation age, covering the interval from the Late Devonian to the Carboniferous. Dating of U-Pb age from basalt interbeds indicates that the redefined Gajinxueshan Group and Zhongxinrong Group may be considered Carboniferous to Permian and latest Permian to Middle Triassic in age. In geotectonic terms the Jinshajiang suture zone is thought to be a back-arc basin in the eastern margin of the Paleo-Tethys. This back-arc basin started in the Late Devonian, and formed in the Devonian-Carboniferous. The collision event around the Permian/Triassic boundary to the Middle Triassic led to the closure of the back-arc basin and formation of suture.  相似文献   

19.
The NE-trended Mesozoic granodioritic intrusions are spatially and temporally associated with the copper multi-metal mineralization in southeastern Hunan Province, South China. U-Pb dating result of single-grained zircons of four samples respectively from Shuikoushan, Baoshan, western Tongshanling and eastern Tongshanling intrusions reveals that their crystallization age spans a range from 172 Ma to 181 Ma, which also represents the oldest age of the regional copper multi-metal mineralization. Some of the zircon grains give an upper intercept age of about 1753 Ma and 207Pb/206Pb apparent age of (1752 ± 4) Ma, implying the involvement of the pre-Cambrian metamorphic (possible Middle Proterozoic) basement in their genesis. The presence of such a kind of zircon grains in these granodiorites indicates either that the parental magmas were assimilated by basement rocks during magma ascent or that lower/middle crustal rocks were one of the important components during the melting process.  相似文献   

20.

SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neo-proterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857 ± 13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neo-proterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860–750 Ma mantle superplume beneath the supercontinent Rodinia.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号