首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文讨论近年来在通过冕环相互作用而形成太阳耀斑的研究上所取得的进展。在观测上,无论在射电波段,或者X射线和光学波段的观测都提供了一些可靠的证据,说明耀斑冕环的相互作用可能导致耀斑的产生。在理论上,等离子体环的相互作用所引起的结合不稳定性将触发耀斑,释放大量的能量以产生观测到的各种辐射特性。  相似文献   

2.
耀斑软X射线流量的统计性质   总被引:1,自引:0,他引:1  
张平  刘四明 《天文学报》2015,56(1):35-43
为了更定量地研究太阳耀斑软X射线辐射的统计性质,发展了一套对于给定峰值流量区间的耀斑的自动识别程序,并用它分析了从1980年到2013年GOES(Geostationary Operational Environmental Satellite)在两个软X射线波段上对太阳耀斑的观测.研究发现耀斑软X射线流量在峰值附近变化的统计特征和耀斑流量峰值的绝对大小无关:平均而言耀斑流量的上升时间约是下降时间的一半,而且高能量通道的上升和下降时间比相应的低能量通道时间要短,但是这些时间还是会随着耀斑流量变化幅度的增加而增加.  相似文献   

3.
一个太阳耀斑约含数千个微耀斑[1],每个微耀斑以热的,低频波和加速粒子的形式释放能量。耀斑期间大部分能量的释放是通过电子加速转移的结果,然而电子加速是在耀斑前相开始,并在整个耀斑持续期间继续保持。在耀斑发展的不同相期间伴有各种各样的射电辐射现象(及其它波段共生现象),多波段射电观测和比较可以给出有关电子加速过程和耀斑自身发展的重要信息,尤其可检测加速开始的时间和频率部位(目前仍为太阳物理的前沿)。微耀斑能量的瞬时释放可能是引起不同类型快速精细结构的原因,射电毫秒级尖峰辐射是起因于连续能量释放的证据,其辐射源位于或靠近能量释放区[2],公认射电辐射的快速结构是日冕电子束的特征信号[3,4],所以今后使用高时间和高频率分辨率的宽带频谱仪同时观测可详细地探测加速过程,从而对预耀斑的加热和初始能量释放,耀斑的逐步建立和演化都具有重要意义。本文介绍几个典型事件,包括射电尖峰脉冲辐射,类尖峰辐射和短时标漂移结构  相似文献   

4.
太阳耀斑的分类   总被引:1,自引:0,他引:1  
太阳耀斑分类工作的进展反映了太阳耀斑观测研究与理论研究的进展。本文首先综述耀斑的分类,对近年提出的种种分类作评述,讨论这些分类的观测基础。然后,基于最近两个太阳周的观测工作,提出一种新的多能段太阳耀斑分类方法。按照耀斑在光学,X射线以及射电波段的观测表象,把耀斑较完整地分为8类。  相似文献   

5.
定标是射电天文观测中基础而重要的工作.定标工作可以得到太阳观测中的一个重要物理量:太阳射电辐射流量,可以扣除射电频谱仪的通道不均匀性,清晰显示射电频谱特征.结合紫金山天文台射电频谱仪的观测数据,详细介绍了定标的基本方法,分析了定标常数的变化情况,最后给出了定标结果,并与野边山射电偏振计以及RHESSI(The Reuven Ramaty High Energy Solar Spectroscopic Imager)卫星硬X射线波段的几个太阳耀斑的观测结果进行了比较,结果符合耀斑的光变特征.其中对一个耀斑脉冲相硬X射线流量和微波光变的相关性的分析表明这些观测可以用来研究有关的辐射机制以及相应的能量释放和粒子加速过程.  相似文献   

6.
周曦  方成 《天体物理学报》1996,16(4):401-407
本分析了南京大学太阳塔1991年10月24日用多波段光谱仪观测到的高时间分辨率(5s)的一个2N/X2.1级白光耀斑光谱,对耀斑谱线轮廓,连续发射强度,X射线和射电爆发资料进行了综合对比,分析表明,该耀斑属I类白光耀斑,具有如下特征:(1)在白光耀斑的脉冲相期间,各波段光谱线心强度,连续辐射,谱线半宽以及线翼红不对称性与硬X射线高能波段的爆分同时达到极大;(2)Hα谱线在连续发射极大时半宽达10  相似文献   

7.
本文总结了1987年2月到1989年12月三波段(1.42GHz、2.84GHz和4.0GHz)高时间分辨率同步观测的资料,介绍了各波段尖峰辐射出现的频次、持续时间以及与射电爆发、光学耀斑和X射线爆的统计关系.  相似文献   

8.
本文简要地叙述了1990年7月30日伴随日面2B级光学耀斑发生的射电爆发,在2840、2640、和1420MHz波段上同步观测结果,其中包括射电爆发在以上波段的秒级时间轮廓和毫秒级时间尺度的spike辐射活动.对它们的形态和频率特征作了简要分析,同时对spike辐射的迴旋电子脉塞增长率、相对辐射频宽和准周期振汤的某些特征及辐射源区的某些物理参数,作了进一步的分析和量级的估算.  相似文献   

9.
我们用紫台多波段太阳光谱仪进行耀斑光谱观测。这架仪器能在Hα、D、M_g、H_β、H_γ、H、H_δ——K、H_θ——H_(12)和H_(13)——H∞等九个波段基本上同时拍摄耀斑光谱。太阳像直径为11.2厘米,二级光谱的实测分辨率约10万,线色散度约为1毫米/埃。在这次峰年期间,从1980年2月至1981年5月,我们一共拍到16套耀斑光谱底片。我们已开始用这些资料来研究,(1)耀斑的能量传输机制,(2)耀斑的热动平衡偏离,(3)地面与空间观测资料的配合,(4)形态研究,并已开始归算处理这些资料。  相似文献   

10.
主要讨论太阳耀斑过程中非热电子动力学过程的理论模型以及在硬X射线和射电波段的观测特征。现在广为接受的非热电子动力学过程的模型是"俘获+沉降"模型,由电子的加速、注入、沉降、俘获及能量损失5个部分组成。射电和硬X射线爆发是非热电子在输运过程中与磁场、背景等离子体及其产生的波等相互作用的产物,是非热电子动力学过程的即时反映。通过分析射电和硬X射线辐射的流量、谱和成像特征,可以研究非热电子的空间分布和时间演化,研究非热电子输运过程中发生的碰撞、辐射、散射、波-波、波-粒相互作用等物理过程,研究耀斑磁场、背景等离子体特征,进而为太阳耀斑的磁场结构、太阳大气分布、磁重联模型的研究提供理论和观测依据。  相似文献   

11.
本文分析了云南天文台10m射电望远镜在2lcm波段上观测到的一次尖峰辐射事件,这次事件发生在5629活动区(S16W109),它伴随了X2·9/SF耀斑及边缘耀斑环,并且有质子流量的上升和一次罕见的地磁场突然反相脉冲与之对应.我们从耀斑环的Hβ照片可以看出,在尖峰辐射发生前,原先存在的耀斑环的顶部开始变亮,而尖峰开始后环顶亮度达到极大,说明这次尖峰辐射与耀斑环顶部增亮有关,辐射很可能来自环顶.从尖峰事件的时间轮廓得到的FFT功率谱表明存在150ms的准周期脉动.按照Mclean等人的模型,即脉动是由俘获在磁通管内的电子的径向振荡引起,可以推断,这次尖峰辐射与Fermi机制激发快速电子有关,且尖峰的发生需要被俘获的电子.此外,我们将这次尖峰事件分解为几百个元耀斑爆发(EFB),并且讨论了这些EFB的性质.  相似文献   

12.
云南天文台是参加日地系统整体行为研究计划的单位之一,有四套太阳光学观测设备参加日地大事件的联合观测。它们是:13cm折射望远镜、18cm耀斑巡视望远镜、26cm高分辨太阳光球色球望远镜和多波段太阳光谱仪。13cm折射望远望和18cm耀斑巡视镜分别进行黑子描绘、照相和耀斑巡视的常规观测。它们所得的资料供云南天文台《太阳活动月报》、《中国太阳物理资料》发表。耀斑资料还供SGD发表。黑子和耀斑的常规观测为太阳活动预报提供及时的信息和基础。 26cm高分辨真空太阳光球色球望远镜用于太阳活动区现象特别是耀斑现象的精细结构研究。在耀斑观测中常使用H_a的±0.5A,±1.0A对人观测,所得的耀斑偏带照片清楚显示耀斑的亮点和亮块相对于黑子的位置,在耀斑研究中十分有用。 多波段太阳光谱仪的供光定天镜口径40cm,成像镜30cm,太阳象有152.2mm和418.5mm两个交替使用,色散1A/mm,10个波段分别为H_a、D_(1,2,3),H_δ、HeⅡ、H_β、H_γ、H,K、H_(9-13)和H_(13-∞)。利用计算机控制45°转象镜精确地快速扫描太阳象并控制10个波段的同时照相,这样可以快速地记录活动区中每一点的多波段光谱轮廓,进而测定各种物理量、为研究活动区物理场的时空演化提供重要手段。  相似文献   

13.
本文分析了南京大学太阳塔1991年10月24日用多波段光谱仪观测到的高时间分辨率(5s)的一个2N/X2.1级白光耀斑光谱.对耀斑谱线轮廓、连续发射强度、X射线和射电爆发资料进行了综合对比,分析表明,该耀斑属Ⅰ类白光耀斑,具有如下特征:(1)在白光耀斑的脉冲相期间,各波段光谱线心强度、连续辐射、谱线半宽以及线翼红不对称性与硬X射线高能波段的爆发同时达到极大;(2)H_a谱线在连续发射极大时半宽达10A,且呈现强烈的线心反转,H_β和H_γ线心亦有反转;(3)所拍摄的5条谱线都有明显的红不对称性,持续时间约为1分钟,根据上述结果,本文用电子束轰击、色球蒸发和色球压缩区对该耀斑能量积聚和释放的动力学机制作了定性的分析和解释。  相似文献   

14.
本文介绍1993年10月2日发生的一个1N/C6.5级耀斑多波段观测的结果.综合比较了耀斑的单色象,Hα波段工维光谱,2840兆赫微波爆发和硬X射线爆发资料.得到Hα单色象上不同亮核的强度变化,与微波及硬X射线暴的时间轮廓比较,给出了色球耀斑区亮度场的演化,对照磁图确定了耀斑区的磁场位形,从而对该耀斑产生和加热提出了一种可能的解释.  相似文献   

15.
磁准分界面(Quasi-Separatrix Layer,简称QSL)是3维磁结构中磁力线连接性发生显著改变的区域,观测表明它多数时候和耀斑带所在的位置符合得较好.有关这一结构和3维磁重联及耀斑关系的研究在近年来受到越来越多的关注.从QSL的理论出发,研究了2011年12月26日在活动区AR11384发生的一个C5.7级典型双带耀斑(事件1)和2015年6月22日发生在活动区AR12371处的一个M6.5级耀斑(事件2).结合SDO/AIA(Solar Dynamics Observatory/Atmospheric Imaging Assembly)观测到的多波段数据和SDO/HMI(Helioseismic and Magnetic Imager)观测到的矢量磁场数据,首先分别利用势场和非线性无力场对日冕的3维磁场结构进行了外推,并计算了活动区磁自由能的演化;然后基于势场和非线性无力场的外推结果计算了不同高度处磁压缩因子(magnetic squashing factor)Q的对数分布,并研究了不同高度磁准分界面与相应高度处观测到的耀斑带的演化关系.最后分析了2个耀斑事件的多波段演化特征,并计算得到事件2中磁力线的平均滑动速度在304?A波段和335?A波段分别为4.6 km·s~(-1)和6.3 km·s~(-1).研究发现:计算得到的磁准分界面在色球和日冕中的位置和相应高度观测到的耀斑带的位置符合得较好,而且各层次的磁准分界面与相应层次的耀斑亮带在时间上也有近乎一致的演化行为,这突显出了磁准分界面理论在3维磁重联和耀斑研究中的作用,并证实事件2耀斑能量的释放可能是通过发生在QSL处的磁重联进行的,同时说明,研究QSL对于理解2维磁重联和3维磁重联本质联系是至关重要的.  相似文献   

16.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

17.
太阳空间观测为揭示太阳新的观测现象与研究开拓了新的途径。空间观测具有全波段、全时段、全方位以及无大气抖动和大气散射光等观测优点。本文着重探讨了太阳空间长波射电观测、X射线观测、紫外线观测的成就与研究结果。这些波段(包括光学)的爆发均起因于太阳大气中被加速的荷能电子与太阳等离子体、磁场相互作用而产生的电磁辐射,其能量约占太阳耀斑总量的1/4,即1025J。  相似文献   

18.
太阳空间观测为揭示太阳新的观测现象与研究开拓了新的途径。空间观测具有全波段、全时段、全方位以及无大气抖动和大气散射光等观测优点。本文着重探讨了太阳空间长波射电观测、X射线观测、紫外线观测的成就与研究结果。这些波段(包括光学)的爆发均起因于太阳大气中被加速的荷能电子与太阳等离子体、磁场相互作用而产生的电磁辐射,其能量约占太阳耀斑总量的1/4,即10^25J。  相似文献   

19.
太阳耀斑研究进展和展望   总被引:3,自引:0,他引:3  
丁明德 《天文学进展》2001,19(2):141-145
简要回顾了近年来对太阳耀斑研究在某些方面所取得的进展,这些领域空间和地面观测,耀斑光谱研究,耀斑的动力学模型和MHD数值模拟等,并对耀斑研究的前景作一简短的展望。  相似文献   

20.
利用国家天文台(北京和昆明)的射电频谱仪(频段为0.65~7.6 GHz)和相关的NoRH/17GHz射电以及TRACE/171 EUV和Yohkoh/SXT的观测资料,分析了2001/04/10和10/19的2个共生精细时间结构的稀有事件,这2个事件的射电爆发时间轮廓和观测特征相似,通过这2个事件的微波(17GHz)偏振观测资料的比较,发现这2个射电爆发均由包含多重(4极)磁结构的复杂活动区引起,特别指出这2个耀斑最后都导致了耀斑后相的分米波射电爆发(第二次触发耀斑),这可能是后环引起的射电爆发。它们都分别对应于双极磁位形,表明这两次触发耀斑是由相似的耀斑模型产生。2个分米波爆发可能是相似(homologous)耀斑的射电表现,可以推测这两次耀斑的驱动器可能皆是磁流浮现或对消(因为源区有新的单或双极出现或消失),而它们的触发器皆是由双极反向Y型位形(具有一个双极拱的单磁流系统)的磁重联,耀斑后环的演化是导致耀斑后相分米波射电爆发的必要条件。我们认为,这双带耀斑对应的宽带射电爆发辐射机制是回旋同步加速辐射过程,而耀斑后相的窄带分米波爆发的辐射机制是等离子体辐射过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号