首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

2.
This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.  相似文献   

3.
The aim of this study was to identify the mechanisms of runoff generation and routing and their controlling factors at the hillslope scale, on artificial slopes derived from surface coal mining reclamation in a Mediterranean–continental area. Rainfall and runoff at interrill and microcatchment scales were recorded for a year on two slopes with different substrata: topsoil cover and overburden cover. Runoff coefficient and runoff routing from interrill areas to microcatchment outlets were higher in the overburden substratum than in topsoil, and greater in the most developed rill network. Rainfall volume is the major parameter responsible for runoff response on overburden, suggesting that this substratum is very impermeable—at least during the main rainfall periods of the year (late spring and autumn) when the soil surface is sealed. In such conditions, most rainfall input is converted into runoff, regardless of its intensity. Results from artificial rainfall experiments, conducted 3 and 7 years after seeding, confirm the low infiltration capacity of overburden when sealed. The hydrological response shows great seasonal variability on the overburden slope in accordance with soil surface changes over the year. Rainfall volume and intensities (I30, I60) explain runoff at the interrill scale on the topsoil slope, where rainfall experiments demonstrated a typical Hortonian infiltration curve. However, no correlation was found at the microcatchment level, probably because of the loss of functionality of the only rill as ecological succession proceeded. The runoff generation mechanism on the topsoil slope is more homogeneous throughout the year. Runoff connectivity, defined as the ratio between runoff rates recorded at the rill network scale and those recorded at the interrill area scale in every rainfall event, was also greater on the rilled overburden slope, and in the most developed rill network. The dense rill networks of the overburden slope guarantee very effective runoff drainage, regardless of rainfall magnitude. Rills drain overland flow from interrill‐sealed areas, reducing the opportunity of reinfiltration in areas not affected by siltation. Runoff generation and routing on topsoil slopes are controlled by grass cover and soil moisture content, whereas on overburden slopes rill network density and soil moisture content are the main controlling factors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Biological soil crust (BSC), as a groundcover, is widely intergrown with grass. The effects of grass combined with BSCs on slope hydrology and soil erosion during rainfall are still unclear. In this study, simulated rainfall experiments were applied to a soil flume with four different slope cover treatments, namely, bare soil (CK), grass cover (GC), BSC, and GC + BSC, to observe the processes of runoff and sediment yield. Additionally, the soil moisture at different depths during infiltration was observed. The results showed that the runoff generated by rainfall for all treatments was in the following order: BSC > GC + BSC > CK > GC. Compared with CK, GC promoted infiltration, and BSC inhibited infiltration. The BSCs obviously inhibited infiltration at a depth of 8 cm. When the rainfall continued to infiltrate down to 16 and 24 cm, the effects of grass on promoting infiltration were stronger than those of BSCs on inhibiting infiltration. Compared with CK, the flow velocity of the BSC, GC and GC + BSC treatments was reduced by 62.8%, 32.3% and 68.3%, respectively. The BSCs and grass increased the critical shear stress by increasing the resistance. Additionally, the average sediment yield of GC and both treatments with BSCs was reduced by 80.8% and >99%, respectively, compared with CK. The soil erosion process was dominated by the soil detachment capacity in the CK, BSC and GC + BSC treatments, while the GC treatment showed a transport-limited process. This study provides a scientific basis for the reasonable spatial allocation of vegetation in arid and semiarid areas and the correction of vegetation cover factors in soil erosion prediction models.  相似文献   

5.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Mathematical models developed for quantification of sediment transport in hydrological watersheds require data collected through field or laboratory experiments, but these are still very rare in the literature. This study aims to collect such data at the laboratory scale. To this end, a rainfall simulator equipped with nozzles to spray rainfall was constructed, together with an erosion flume that can be given longitudinal and lateral slopes. Eighty experiments were performed, considering microtopographical features by pre-forming a rill on the soil surface before the start of each experiment. Medium and fine sands were used as soil, and four rainfall intensities (45, 65, 85 and 105 mm h-1) were applied in the experiments. Rainfall characteristics such as uniformity, granulometry, drop velocity and kinetic energy were evaluated; flow and sediment discharge data were collected and analysed. The analysis shows that the sediment transport rate is directly proportional to rainfall intensity and slope. In contrast, the volumetric sediment concentration stays constant and does not change with rainfall intensity unless the slope changes. These conclusions are restricted to the conditions of experiments performed under rainfall intensities between and 105 mm h-1 for medium and fine sands in a 136-cm-wide, 650-cm-long and 17-cm-deep erosion flume with longitudinal and lateral slopes varying between 5 and 20%.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation Aksoy, H., Unal, N.E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci, S.B., Eris, E., and Pak, G., 2013. Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58 (7), 1505–1518.  相似文献   

7.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

8.
The problem of obtaining field‐scale surface response to rainfall events is complicated by the spatial variability of infiltration characteristics of the soil and rainfall. In this paper, we develop and test a simplified model for generating surface runoff over fields with spatial variation in both rainfall rate and saturated hydraulic conductivities. The model is able to represent the effects of local variation in infiltration, as well as the run‐on effect that controls infiltration of excess water from saturated upstream areas. The effective rainfall excess is routed to the slope outlet using a simplified solution of the kinematic wave approximation. Model results are compared to averaged hydrographs from numerically‐intensive Monte–Carlo simulations for observed and design rainfall events and soil patterns that are typical of Central Italy. The simplified model is found to yield satisfactory results at a relatively small computational expense. A proposal to include a simple channel routing scheme is also presented as a prelude to extend this conceptualization to watershed scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Natural loess slopes are characterized by a strong geological structure, which is an important factor in maintaining slope stability. The magnitude and duration of the earthquake may disturb the soil structure at different levels degrees, locally changing the arrangement between soil particles. The process of rainfall humidification weakens the cementation between soil particles, and the disturbance and humidification change the structural state of the soil, which in turn causes sliding of the slope along with the decay of soil mechanical properties. As slope instability is often the result of a series of post-earthquake ripple effects, it is of great scientific significance to study the mechanism of slope instability due to the structural decay of earthquake-damaged loess exacerbated by rainfall. In this paper, the impact of structural decay of loess on slope stability is simulated by GEOSTUDIO software under three conditions: pre-earthquake rainfall, post-earthquake rainfall and earthquake, taking the landslide in Buzi Village, Min County, Gansu Province as an example. The comparative analysis of the calculation results shows that the structural properties of the slope without earthquake disturbance are influenced by infiltration amount. When it is fully saturated, the structural properties are similar to those of saturated soil, and the safety factor is reduced by 12.9%. In addition, the earthquake intensity and duration have different degrees of structural damage to the soil. When the structure is fully damaged, it is similar to that of remodelled soil, and the safety factor is reduced by 45.84%. Notably, the process of the earthquake and the following humidification generates the most serious damage to the loess structure, with a reduction in the safety factor of up to 56.15%. The quantitative analysis above obviously illustrates that the post-earthquake rainfall causes the most severe damage to structural loess slopes, and the resulting landslide hazard should not be underestimated.  相似文献   

10.
Natural hillslopes are mostly composed of complex slope shapes, which significantly affect soil erosion. However, existing studies have mainly focused on uniform slopes to simplify complex hillslopes, and the mechanisms responsible for the influence of slope shape on soil and nutrient losses are still not well understood, especially in the application of soil improvers to reduce soil loss. To investigate the effects of slope shape and polyacrylamide (PAM) application on runoff, soil erosion and nutrient loss, this study conducted artificial field rainfall experiments involving two PAM application rates and nine slope shapes. The results indicate that the average amount of soil loss from convex slopes was 1.5 and 1.3 times greater than that from concave and uniform slopes, respectively, and the average amount of ammonia nitrogen loss and phosphate loss increased by 24.0%–58.6%. Soil and nutrient losses increased as the convexity of the convex slopes increased. For runoff, there was little difference between concave and convex slopes, but the runoff amount for both slopes was greater than that for uniform slopes. After PAM application, the soil loss decreased by more than 90%, and the nutrient loss decreased by 28.2%–68.1%. The application of PAM was most effective in reducing soil erosion and nutrient loss from convex slopes, and it is recommended to appropriately increase the PAM application rate for convex slopes. A strong linear relationship between ammonia nitrogen and phosphate concentrations and sediment concentrations was found in the runoff on slopes with no PAM application. However, this linear relationship weakened for slopes with PAM application. The findings of this study may be valuable for optimizing nonpoint source pollution management in basins.  相似文献   

11.
Hortonian runoff was measured in the laboratory from uniform slopes of lengths of 1·5, 3·0, and 6·0 m for steady, high‐intensity rainstorms with durations of 1·0 to 7·5 min. A clear reduction in runoff per unit slope length was found as slope lengths were increased. This effect becomes more pronounced with decreasing storm duration. The runoff data were used to validate a simple process‐based model that combines the Philip‐two‐term infiltration equation with the kinematic wave overland flow principle. The predicted and experimental results agreed well. Laboratory findings were extrapolated with the aid of the model to slopes and rainfall durations similar to those found under West African conditions. The calculated reduction of runoff per unit length is similar to reported observations. Thus, this process‐based model can largely explain the phenomenon of runoff reduction with increasing slope length. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Many simplifications are used in modeling surface runoff over a uniform slope. A very common simplification is to determine the infiltration rate independent of the overland flow depth and to combine it afterward with the kinematic-wave equation to determine the overland flow depth. Another simplication is to replace the spatially variable infiltration rates along the slope i(x, t) due to the water depth variations h(x,t) with an infiltration rate that is determined at a certain location along the slope. The aim of this study is to evaluate the errors induced by these simplications on predicted infiltration rates, overland flow depths, and total runoff volume. The error analysis is accomplished by comparing a simplified model with a model where the interaction between the overland flow depth and infiltration rate is counted. In this model, the infiltration rate is assumed to vary along the slope with the overland flow depth, even for homogeneous soil profiles. The kinematic-wave equation with interactive infiltration rate, calculated along the slopy by Richard's equation, are then solved by a finite difference scheme for a 100-m-long uniform slope. In the first error analysis, we study the effect of combining an ‘exact’ and ‘approximate’ one-dimensional infiltration rate with the kinematic-wave equation for three different soil surface roughness coefficients. The terms ‘exact’ and ‘approximate’ stand for the solution of Richard's equation with and without using the overland flow depth in the boundary condition, respectively. The simulations showed that higher infiltration rates and lower overland flow depths are obtained during the rising stage of the hydrograph when overland flow depth is used in the upper boundary condition of the one-dimensional Richard's equation. During the recession period, the simplified model predicts lower infiltration rates and higher overland flow depths. The absolute relative errors between the ‘exact’ and ‘approximate’ solutions are positively correlated to the overland flow depths which increase with the soil surface roughness coefficient. For this error analysis, the relative errors in surface runoff volume per unit slope width throughout the storm are much smaller than the relative errors in momentary overland flow depths and discharges due to the alternate signs of the deviations along the rising and falling stages. In the second error analysis, when the spatially variable infiltration rate along the slope i(x, t) is replaced in the kinematic-wave equation by i(t), calculated at the slope outlet, the overland flow depth is underestimated during the rising stage of the hydrograph and overestimated during the falling stage. The deviations during the rising stage are much smaller than the deviations during the falling stage, but they are of a longer duration. This occurs because the solution with i(x, t) recognizes that part of the slope becomes dry after rainfall stops, while overland flow still exists with i(t) determined at the slope outlet. As obtained for the first error analysis, the relative errors in surface runoff volume per unit slope width are also much smaller than the relative errors in momentary overland flow depths and discharges. The relation between the errors in overland flow depth and discharge to different mathematical simplifications enables to evaluate whether certain simplifications are justified or more computational efforts should be used.  相似文献   

14.
Rainfall-induced landslides are a common occurrence in terrain with steep topography and soils that have degradable strength. Rainfall infiltration into a partially saturated slope of infinite extent can lead to either a decrease or complete elimination of soil suction, compromising the slopes' stability. In this research the rainfall infiltration coupled with deformation of a partially saturated soil slope during rainfall infiltration is analyzed. The limit equilibrium conditions and the shear strength relationship of a partially saturated soil are employed to develop an analytical solution for calculating the stability of an infinite partially saturated slope due to rainfall infiltration. The analytical solutions are able to consider the influence of the coupled effects on the stability of the slope. The factors that affect the safety of a partially saturated slope of infinite extent are discussed. The results indicate that the poro-mechanical coupling of water infiltration and deformation has an important effect on the stability of the infinite unsaturated slope.  相似文献   

15.
Abstract

The design and construction of a special-purpose laboratory catchment and rainfall simulator is described. The equipment consists of a soil catchment area that can be inclined at various angles. Additional instrumentation then measures the flow of water across the surface of, and through, the soil bed. Precipitation is provided by a unit that simulates rainfall at particular rates with uniform distribution.

The equipment was used to examine infiltration, runoff and other hydrological properties of a number of soils under different rainfall intensities and with different catchment slopes. Correlations were obtained for these variables.  相似文献   

16.
This study first explores the role of spatial heterogeneity, in both the saturated hydraulic conductivity Ks and rainfall intensity r, on the integrated hydrological response of a natural slope. On this basis, a mathematical model for estimating the expected areal‐average infiltration is then formulated. Both Ks and r are considered as random variables with assessed probability density functions. The model relies upon a semi‐analytical component, which describes the directly infiltrated rainfall, and an empirical component, which accounts further for the infiltration of surface water running downslope into pervious soils (the run‐on effect). Monte Carlo simulations over a clay loam soil and a sandy loam soil were performed for constructing the ensemble averages of field‐scale infiltration used for model validation. The model produced very accurate estimates of the expected field‐scale infiltration rate, as well as of the outflow generated by significant rainfall events. Furthermore, the two model components were found to interact appropriately for different weights of the two infiltration mechanisms involved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

18.
Surface hydrological behaviour is important in drylands because it affects the distribution of soil moisture and vegetation and the hydrological functioning of slopes and catchments. Microplot scale run‐off can be relatively easily measured, i.e. by rainfall simulations. However, slope or catchment run‐off cannot be deduced from microplots, requiring long‐time monitoring, because run‐off coefficients decrease with increasing drainage area. Therefore, to determine the slope length covered by run‐off (run‐off length) is crucial to connect scales. Biological soil crusts (BSCs) are good model systems, and their hydrology at slope scale is insufficiently known. This study provides run‐off lengths from BSCs, by field factorial experiments using rainfall simulation, including two BSC types, three rain types, three antecedent soil moistures and four plot lengths. Data were analysed by generalized linear modelling, including vascular plant cover as covariates. Results were the following: (i) the real contributing area is almost always much smaller than the topographical contributing area; (ii) the BSC type is key to controlling run‐off; run‐off length reached 3 m on cyanobacterial crust, but hardly over 1 m on lichen crust; this pattern remained through rain type or soil moisture; (iii) run‐off decreased with BSC development because soil sealing disappears; porosity, biomass and roughness increase and some changes occur in the uppermost soil layer; and (iv) run‐off flow increased with both rain type and soil moisture but run‐off coefficient only with soil moisture (as larger rains increased both run‐off and infiltration); vascular plant cover had a slight effect on run‐off because it was low and random. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
he slopes in field conditions are always irregular, but the supposed uniform slopes are used in most erosion models. Some studies used several uniform slopes to approximate an irregular slope for estimating soil erosion. This approximation is both time-consuming and weak in physical insights. In this paper, the concept of equivalent slope is presented based on that runoff potential on uniform slope is equal to that of irregular slope, and the equivalent uniform slope is used to estimate soil erosion instead of the irregular slopes. The estimated results of slope-length factors for convex and concave slopes are consistent with those from the method of Foster and Wischmeier, The experiments in the southern part of the Loess Plateau in China confirmed the applicability of the present method. The method is simple and has, to some extent, clear physical meanings, and is applicable for estimating soil erosion from irregular slopes.  相似文献   

20.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号