首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main‐group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for 21Ne and 26Al). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic‐ray exposure (CRE) ages for the metal phases of the main‐group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main‐group pallasites underwent a major break‐up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the 21Ne exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth‐dependency of the production rate ratio 10Be/21Ne in metal, not accounted for in our calculations, may explain the difference.  相似文献   

2.
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl‐36Ar cosmic‐ray exposure (CRE) ages, which are shielding‐independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl‐36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.  相似文献   

3.
Abstract— We present a purely physical model for the calculation of depth‐ and size‐dependent production rates of cosmogenic nuclides by galactic cosmic‐ray (GCR) particles. besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on only one free parameter—the integral number of gcr particles in the meteoroid orbits. We derived this value from analysis of radionuclide data in Knyahinya. We also show that the mean GCR proton spectrum in the meteoroid orbits has been constant over about the last 10 Ma. For the major target elements in stony meteoroids, we present depth‐ and size‐dependent production rates for 10Be, 14C, 26Al, 36Cl, and 53Mn as well as for the rare gas isotopes 3He, 20Ne, 21Ne, 22Ne, 36Ar, and 38Ar. The new data differ from semi‐empirical estimates by up to a factor of 4 but agree within ~20% with results obtained by earlier parametric or physical approaches. The depth and size dependence of the shielding parameter 22Ne/21Ne and the correlations 26Al vs. 10Be, 26Al vs. 53Mn, 10Be/21Ne vs. 22Ne/21Ne, and 36Ar vs. 36Cl for deciphering preatmospheric sizes, shielding depths, terrestrial residence times, and exposure histories are also discussed.  相似文献   

4.
Abstract– The interior texture and chemical and noble gas composition of 99 cosmic spherules collected from the meteorite ice field around the Yamato Mountains in Antarctica were investigated. Their textures were used to classify the spherules into six different types reflecting the degree of heating: 13 were cryptocrystalline, 40 were barred olivine, 3 were porphyritic A, 24 were porphyritic B, 9 were porphyritic C, and 10 were partially melted spherules. While a correlation exists between the type of spherule and its noble gas content, there is no significant correlation between its chemical composition and noble gas content. Fifteen of the spherules still had detectable amounts of extraterrestrial He, and the majority of them had 3He/4He ratios that were close to that of solar wind (SW). The Ne isotopic composition of 28 of the spherules clustered between implantation‐fractionated SW and air. Extraterrestrial Ar, confirmed to be present because it had a 40Ar/36Ar ratio lower than that of terrestrial atmosphere, was found in 35 of the spherules. An enigmatic spherule, labeled M240410, had an extremely high concentration of cosmogenic nuclides. Assuming 4π exposure to galactic and solar cosmic rays as a micrometeoroid and no exposure on the parent body, the cosmic‐ray exposure (CRE) age of 393 Myr could be computed using cosmogenic 21Ne. Under these model assumptions, the inferred age suggests that the particle might have been an Edgeworth‐Kuiper Belt object. Alternatively, if exposure near the surface of its parent body was dominant, the CRE age of 382 Myr can be estimated from the cosmogenic 38Ar using the production rate of the 2π exposure geometry, and implies that the particle may have originated in the mature regolith of an asteroid.  相似文献   

5.
Abstract— The concentrations of cosmogenic radionuclides and noble gases in Pitts (IAB) and Horse Creek (ungrouped) provide unambiguous evidence that both irons have a complex exposure history with a first‐stage irradiation of 100–600 Myr under high shielding, followed by a second‐stage exposure of ?1 Myr as small objects. The first‐stage exposure ages of ?100 Myr for Horse Creek and ?600 Myr for Pitts are similar to cosmic‐ray exposure ages of other iron meteorites, and most likely represent the Yarkovsky orbital drift times of irons from their parent bodies in the main asteroid belt to one of the nearby chaotic resonance zones. The short second‐stage exposure ages indicate that collisional debris from recent impact events on their precursor objects was quickly delivered to Earth. The short delivery times suggests that the recent collision events occurred while the precursor objects of Horse Creek and Pitts were either very close to the chaotic resonance zones or already in Earth‐crossing orbits. Since the cosmogenic noble gas records of Horse Creek and Pitts indicate a minimum radius of a few meters for the precursor objects, but do not exclude km‐sized objects, we conclude that these irons may represent fragments of two near‐Earth asteroids, 3103 Eger and 1986 DA, respectively. Finally, we used the cosmogenic nuclide concentrations in Horse Creek, which contains 2.5 wt% Si, to test current model calculations for the production of cosmogenic 10Be, 26Al, and neonisotopes from iron, nickel, and silicon.  相似文献   

6.
We present noble gas data for 16 shergottites, 2 nakhlites (NWA 5790, NWA 10153), and 1 angrite (NWA 7812). Noble gas exposure ages of the shergottites fall in the 1–6 Ma range found in previous studies. Three depleted olivine‐phyric shergottites (Tissint, NWA 6162, NWA 7635) have exposure ages of ~1 Ma, in agreement with published data for similar specimens. The exposure age of NWA 10153 (~12.2 Ma) falls in the range of 9–13 Ma reported for other nakhlites. Our preferred age of ~7.3 Ma for NWA 5790 is lower than this range, and it is possible that NWA 5790 represents a distinct ejection event. A Tissint glass sample contains Xe from the Martian atmosphere. Several samples show a remarkably low (21Ne/22Ne)cos ratio < 0.80, as previously observed in a many shergottites and in various other rare achondrites. This was explained by solar cosmic ray‐produced Ne (SCR Ne) in addition to the commonly found galactic cosmic ray‐produced Ne, implying very low preatmospheric shielding and ablation loss. We revisit this by comparing measured (21Ne/22Ne)cos ratios with predictions by cosmogenic nuclide production models. Indeed, several shergottites, acalpulcoites/lodranites, angrites (including NWA 7812), and the Brachina‐like meteorite LEW 88763 likely contain SCR Ne, as previously postulated for many of them. The SCR contribution may influence the calculation of exposure ages. One likely reason that SCR nuclides are predominantly detected in meteorites from rare classes is because they usually are analyzed for cosmogenic nuclides even if they had a very small (preatmospheric) mass and hence low ablation loss.  相似文献   

7.
Abstract— We performed a comprehensive study of the noble gas isotopic abundances, radionuclide activities, and mineralogical and chemical composition of two mesosiderites and two iron meteorites. For the mesosiderites Dong Ujimqin Qi and Weiyuan, the silicate and the metal phases were studied. The anomalous ataxite Rafrüti is not chemically related to any other meteorite class, whereas Ningbo is a type IVA octahedrite. The mineralogy and major and trace element abundances of the silicate phases of Dong Ujimqin Qi and Weiyuan are similar to those of other mesosiderites and distinct from those of the howardites. The cosmic‐ray exposure history was studied based on the concentrations of the cosmogenic noble gas nuclei and radionuclide activities. For the iron meteorites, cosmic‐ray exposure ages were calculated from the pairs 10Be‐21Ne, 26Al‐21Ne, and 36Cl‐36Ar. Rafrüti yields the youngest exposure age of all ataxites (6.8 ± 1.7 Ma), whereas that of Ningbo with 107 ± 15 Ma falls within the range observed for the other octahedrites. The parent body break‐up times of the mesosiderites Dong Ujimqin Qi and Weiyuan are 252 ± 50 and 25.9 ± 5.0 Ma, respectively. We find no evidence for a common break‐up event for the mesosiderites and the howardites.  相似文献   

8.
Abstract— We have measured the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl (half-lives 1.51 Ma, 716 ka, and 300 ka, respectively) in two different laboratories by accelerator mass spectrometry (AMS) techniques, as well as concentrations and isotopic compositions of stable He, Ne and Ar in the Antarctic H-chondrite Allan Hills (ALH) 88019. In addition, nuclear track densities were measured. From these results, it is concluded that the meteoroid ALH 88019 had a preatmospheric radius of (20 ± 5) cm and a shielding depth for the analyzed samples of between 4 and 8 cm. Using calculated and experimentally determined production rates of cosmogenic nuclides, an exposure age of ~40 Ma is obtained from cosmogenic 21Ne and 38Ar. The extremely low concentrations of radionuclides are explained by a very long terrestrial age for this meteorite of 2 ± 0.4 Ma. A similarly long terrestrial age was found so far only for the Antarctic L-chondrite Lewis Cliff (LEW) 86360. Such long ages establish one boundary condition for the history of meteorites in Antarctica.  相似文献   

9.
Abstract— We measured the concentrations and isotopic compositions of He, Ne, and Ar in 29 bulk samples from 11 different strewn field fragments of the large Jiddat al Harasis (JaH) 073 L6 chondrite shower, including 7 samples from known locations within the main mass. In addition, we measured the concentrations of cosmogenic 10Be, 26Al, 36Cl, and 41Ca in 10 samples. All fragments of this shower are characterized by low 10Be concentrations (7.6–12.8 dpm/kg), high 26Al/10Be ratios (3.5‐5), large contributions of neutron capture 41Ca (200–1800 dpm/kgCa), low 3He/21Ne ratios (1.5‐3.0), large variations in cosmogenic 21Ne (1.2–12) × 10?8cm3STP/g, and significant contributions of neutron‐capture 36Ar. Stepwise heating experiments show that neutron‐capture produced 36Ar is predominantly released between 1000–1200 °C. All these results are consistent with a first‐stage exposure of ?65 Ma within ?20 cm of the surface of the L‐chondrite parent body, followed by ejection of a 1.5‐2 m large object, which was then delivered to Earth within about 0.5 and 0.7 Ma. The cosmogenic nuclide data in JaH 073 thus corroborate the trend that many of the large chondrites studied so far experienced a complex exposure history. The observed 3He/21Ne ratios of 2.5‐3.0 in the most shielded samples (including those of the main mass) are lower than predicted by model calculations, but similar to the lowest values found in the large Gold Basin L‐chondrite shower. The Bern plot, which gives a linear correlation for 3He/21Ne versus 22Ne/21Ne, is evidently not valid for very high shielding. Some of our measured 22Ne/21Ne ratios in JaH 073 are lower than 1.06, which is not well understood, but might be explained by loss of cosmogenic neon from shocked sodium‐rich plagioclase during terrestrial weathering. The amount of trapped atmospheric argon in the JaH 073 fragments varies by almost two orders of magnitude and shows only a weak correlation with the size of the fragments, which range from <100 g to >50 kg. Finally, low concentrations of radiogenic 4He and 40Ar indicate incomplete degassing < 1 Ga ago, probably at the main collision event on the L‐chondrite parent body ?480 Ma ago.  相似文献   

10.
Abstract— Core samples were obtained from various locations of the ~ 105-kg Chico, NM, L6 chondrite in order to study the effects of large shielding on the production rates of cosmic-ray-produced nuclides. Relations between measured abundances of cosmogenic nuclides (10Be, 26Al, and stable isotopes of He, Ne, and Ar) and the cosmogenic 22Ne/21Ne ratio were determined and compared with recent model predictions of production rates. The measured 22Ne/21Ne ratios (1.06-1.08) and significant variations observed in concentrations of cosmogenic 21Ne and 3He suggest an ~40-cm shielding gradient across Chico and irradiation within a large object (> 100-cm radius). Noble gas data indicate that Chico experienced greater shielding than chondrites Knyahinya or Keyes and similar to Jilin. Values of 10Be (average = 20.7 dpm/kg) and 26Al (average = 71.1 dpm/kg) are nearly constant, however, and show no correlation with either 22Ne/21Ne or 21Ne. Activities of 10Be and 26Al suggest irradiation in a smaller object (~40–80 cm radius). The 26Al activity and the 26Al/10Be ratio (average value = 3.42) are both significantly larger than values for most other chondrites. These results could indicate a two-stage irradiation with t1 ~ 104 Ma and t2 ~ 4 Ma and a second-stage body the size of Knyahinya. The single stage, 10Be/21Ne exposure age for Chico is 65 Ma. The 22Ne/21Ne ratio apparently becomes insensitive to shielding for objects the size of Chico. No substantial evidence exists for chondrites with 22Ne/21Ne ratios significantly less than ~ 1.055.  相似文献   

11.
Abstract– We measured the concentrations and isotopic ratios of the cosmogenic noble gases He, Ne, and Ar in the very large iron meteorite Xinjiang (IIIE). The 3He and 4He data indicate that a significant portion of the cosmogenic produced helium has been lost via diffusion or in a recent impact event. High 22Ne/21Ne ratios indicate that contributions to the cosmogenic 21Ne from sulfur and/or phosphorous are significant. By combining the measured nuclide concentrations with model calculations for iron meteorites we were able to determine the preatmospheric diameter of Xinjiang to 260–320 cm, which corresponds to a total mass of about 70–135 tons. The cosmic‐ray exposure age of Xinjiang is 62 ± 16 Ma, i.e., relatively short compared to most of the other iron meteorites. With the current database we cannot firmly determine whether Xinjiang experienced a complex irradiation history. The finding of 3He and 4He losses might argue for a recent impact event and therefore for a complex exposure.  相似文献   

12.
Abstract— We report measurements of 26AI, 10Be, 41Ca, and 36Cl in the silicate and metal phases of 11 mesosiderites, including several specimens each of Budulan and Estherville, of the brecciated meteorite Bencubbin, and of the iron meteorite Udei Station. Average production rate ratios (atom/atom) for metal phase samples from Estherville and Budulan are 26Al/10Be = 0.77 ± 0.02; 36Cl/10Be = 5.3 ± 0.2. For a larger set of meteorites that includes iron meteorites and other mesosiderites, we find 26Al/10Be = 0.72 ± 0.01 and 36Cl/10Be = 4.5 ± 0.2. The average 41Ca/36Cl production rate ratio is 1.10 ± 0.04 for metal separates from Estherville and four small iron falls. The 41Ca activities in dpm/(kg Ca) of various silicate separates from Budulan and Estherville span nearly a factor of 4, from <400 to >1600, indicating preatmospheric radii of >30 cm. After allowance for composition, the activities of 26Al and 10Be (dpm/kg silicate) are similar to values measured in most ordinary chondrites and appear to depend only weakly on bulk Fe content. Unless shielding effects are larger than suggested by the 36Cl and 41Ca activities of the metal phases, matrix effects are unimportant for 10Be and minor for 26Al. Noble gas concentrations and isotopic abundances are reported for samples of Barea, Emery, Mincy, Morristown, and Marjalahti. New estimates of 36Cl/36Ar exposure ages for the metal phases agree well with published values. Neon‐21 production rates for mesosiderite silicates calculated from these ages and from measured 21Ne contents are consistently higher than predicted for L chondrites despite the fact that the mesosiderite silicates have lower Mg contents than L chondrites. We suggest that the elevation of the 21Ne production rate in mesosiderite silicates reflects a “matrix effect,” that is, the influence of the higher Fe content of mesosiderites, which acts to enhance the flux of low‐energy secondary particles and hence the 21Ne production from Mg. As 10Be production is relatively insensitive to this matrix effect, 10Be/21Ne ages give erroneously low production rates and high exposure ages. By coincidence, standard 22Ne/21Ne based “shielding” corrections give fairly reliable 21Ne production rates in the mesosiderite silicates.  相似文献   

13.
Cosmogenic He, Ne, and Ar as well as the radionuclides 10Be, 26Al, 36Cl, 41Ca, 53Mn, and 60Fe have been determined on samples from the Gebel Kamil ungrouped Ni‐rich iron meteorite by noble gas mass spectrometry and accelerator mass spectrometry (AMS), respectively. The meteorite is associated with the Kamil crater in southern Egypt, which is about 45 m in diameter. Samples originate from an individual large fragment (“Individual”) as well as from shrapnel. Concentrations of all cosmogenic nuclides—stable and radioactive—are lower by a factor 3–4 in the shrapnel samples than in the Individual. Assuming negligible 36Cl decay during terrestrial residence (indicated by the young crater age <5000 years; Folco et al. 2011 ), data are consistent with a simple exposure history and a 36Cl‐36Ar cosmic ray exposure age (CRE) of approximately (366 ± 18) Ma (systematic errors not included). Both noble gases and radionuclides point to a pre‐atmospheric radius >85 cm, i.e., a pre‐atmospheric mass >20 tons, with a preferred radius of 115–120 cm (50–60 tons). The analyzed samples came from a depth of approximately 20 cm (Individual) and approximately 50–80 cm (shrapnel). The size of the Gebel Kamil meteoroid determined in this work is close to estimates based on impact cratering models combined with expectations for ablation during passage through the atmosphere (Folco et al. 2010 , 2011 ).  相似文献   

14.
The shape of meteorites is one of the major factors influencing the production of cosmogenic nuclides. Numerical simulations using the Los Alamos Code System (LCS) particle production and transport codes were done to investigate particle fluxes and production rates of cosmogenic nuclides 10Be, 26Al, and 60Co in meteoroids of spherical, ellipsoidal, and cylindrical shapes. The calculations show that fluxes of nuclear active particles and also production rates of cosmogenic nuclides are sensitive to the shape of the irradiated parent body.  相似文献   

15.
Abstract— We present the concentrations and isotopic compositions of He, Ne, and Ar for nonmagnetic fractions and bulk samples of 17 H chondrites which were recently investigated for their 36Cl‐36Ar cosmic‐ray exposure ages (Graf et al., 2001). All selected meteorites are observed falls with cosmic‐ray exposure ages close to the 7 Ma peak. The rare gas data are consistent with 10Be and 36C1 production rates in the metal phase. Remarkably, only 1 out of the 17 H chondrites, Bath, shows clear indications for a complex exposure history. Based on rare gas concentrations and 36Cl‐36Ar exposure ages, 21Ne production rates as a function of 22Ne/21 Ne and a mean 38Ar production rate are determined. The results confirm model calculations which predict that the relationship between 21Ne production rates and 22Ne/21Ne is ambiguous for high shielding. Besides the mean 38Ar production rate we also give production rate ratios P(38Ar from Ca)/P(38Ar from Fe). They vary between 10 and 77, showing no significant correlation with 38Ar concentrations or 22Ne/21Ne. By investigating the metal separates, Graf et al. (2001) found significant 3He deficits for 6 out of the 17 meteorites. For the nonmagnetic fractions and bulk samples investigated here, the data points in a 3He/21Ne vs. 22Ne/21Ne diagram plot in the area defined by most of the H chondrites. This means that 3He deficits in the metal phase are much more pronounced than in silicate minerals and we will argue that 3H diffusive losses in meteorites should be the rule rather than the exception. The 21Ne exposure ages, calculated on the basis of modeled 21Ne production rates, confirm the assumption by Graf et al. (2001) that the H5 chondrites with low 3He/38Ar in the metal formed in a separate event than those with normal 3He/38Ar ratios. The data can best be interpreted by assuming that the prominent 7 Ma exposure age peak of the H chondrites is due to at least two events about 7.0 and 7.6 Ma ago.  相似文献   

16.
Abstract— We measured the concentrations of the cosmogenic radionuclides 10Be, 26Al, 36Cl, and 41Ca in the stone and metal fractions of 15 fragments of the Gold Basin L4 chondrite shower, as well as noble gases in 18 Gold Basin fragments. A comparison of 10Be, 26Al, and 41Ca concentrations with calculated production rates from two different models indicates that the Gold Basin samples came from depths of about 10 cm to more than 150 cm in an object with a radius of 3–5 m. As was predicted by recent model calculations, the noble gases show a reversal of the 22Ne/21Ne ratio at very high shielding. The 21Ne/10Be and 21Ne/26Al ratios in most samples are constant and correspond to a 4π exposure age of 18 ± 2 Myr. However, three Gold Basin samples show a 30–120% excess of 21Ne implying that they were previously exposed close to the surface of the parent body, whereas the other samples were buried several meters deeper. Concentrations of neutron‐capture 36Ar in most samples are consistent with measured concentrations of neutron‐capture 36Cl and an exposure age of 18 Myr. Large excesses of neutron‐capture 36Ar were found in those samples with an excess of 21Ne, providing additional evidence of a first‐stage exposure on the parent body. The excess of spallation‐produced 21Ne and neutron‐capture‐produced 36Ar in these samples indicate a first‐stage exposure of 35–150 Myr on the parent body. The radiogenic 4He and 40Ar concentrations indicate a major impact on the parent body between 300 and 400 Myr ago, which must have preceded the impacts that brought the Gold Basin meteoroid to the surface of the parent body and then expelled it from the parent body 18 Myr ago.  相似文献   

17.
A physical model based on the open‐source toolkit Geant4 for production rates of cosmogenic nuclei on the lunar surface is proposed and calibrated. The fluxes of proton and neutron beneath the lunar surface are obtained by simulating the physical processes between the cosmic‐ray particles and the lunar surface material. By combining the experimental proton cross sections and the a posteriori neutron cross sections, we calculate the production rate depth profiles of long‐lived nuclei (10Be, 14C, 26Al, 36Cl, and 53Mn). Through comparing experimental and theoretical data for these nuclei, we find that for all the selected nuclei, experimental and theoretical production rate depth profiles agree well with each other by introducing a single normalization factor. It means that the physical model based on Geant4 can also reproduce the depth profiles of cosmogenic nuclei, and that this model can be used by everyone worldwide. In addition, we predict the production rates of three stable nuclei (21Ne, 22Ne, and 38Ar).  相似文献   

18.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

19.
Abstract— Acapulcoites and lodranites are believed to originate on a common parent body and to represent some of the earliest events in the differentiation of the chondritic asteroids. We have conducted isotopic studies of the noble gases He, Ne, Ar, Kr, and Xe, and determinations of the concentrations of the major elements and of the radionuclides 10Be, 26Al, and 36Cl in an attempt to constrain the cosmic‐ray exposure history of two members of the acapulcoite‐lodranite clan recovered in Antarctica: Frontier Mountain (FRO) 95029 and Graves Nunataks (GRA) 95209. From cosmic‐ray‐produced 3He, 21Ne, and 38Ar and appropriate production rates, we derive parent‐body breakup times of 4.59 ± 0.60 and 6.82 ± 0.60 Ma for FOR 95029 and GRA 95209, respectively. These times are consistent with those obtained from the pairs 10Be‐21Ne and 26Al‐21Ne; whereas the times inferred from the pair 36Cl‐36Ar are slightly longer, perhaps because the 36Cl activities decreased as a result of decay on Earth. Terrestrial ages up to ~50 ka for the two meteorites are consistent with the measured 36Cl activities of the metal phases. All acapulcoites and lodranites dated until now show cosmic‐ray exposure ages in the range of 4–10 Ma. This is the same range as that found for the major exposure age cluster of the H chondrites. As a common parent body is improbable on the basis of the O‐isotopic systematics, a common set of impactors might have affected the asteroid belt 4–10 Ma ago.  相似文献   

20.
Abstract— Cosmic‐ray exposure ages calculated from cosmogenic noble gas nuclides are reported for 57 enstatite (E) chondrites, 43 of them were measured for the first time. With a total of 62 individual E chondrites (literature and this data, corrected for pairing) the observed spectrum of ages ranges between 0.07 and 66 Ma. Three clusters seem to develop at about 3.5, 8, and 25 Ma, respectively. Since the uncertainty of ages is estimated to be ~20% (in contrast to 10 to 15% for ordinary chondrites) and the number of examined samples is still comparatively small, these peaks have to be confirmed by more measurements. Regarding the two subgroups, EH and EL chondrites, no systematic trend is apparent in the distribution of cosmic‐ray exposure ages. Several E chondrites yield significantly lower 38Ar ages compared to those calculated from cosmogenic 3He and 21Ne. For these E chondrites, we suggest a reduction of cosmogenic 38Ar as a result of weathering. In order to prove the possible influence of terrestrial alteration on the cosmogenic noble gas record of E‐chondritic material, we simulated terrestrial weathering in an experiment of 12 weeks duration. The treatment showed that a significant amount of cosmogenic 38Ar is lost on Earth by the influence of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号