首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Subsidence analysis of 16 wells in the Austrian Molasse basin documents major spatial and temporal changes in tectonic subsidence as well as a late-stage surface uplift. The timing of the main phase of tectonic subsidence shifted from early Oligocene in the western part of the peripheral foreland to the early Miocene in the eastern part. These temporal and spatial changes in tectonic subsidence reflect a change from oblique dextral to sinistral convergence between the Alpine nappe stack and its foreland. The main phase of sediment accumulation was delayed to the early Miocene and led to the infill of the basin and a major second, sediment-load driven phase of basement subsidence. Sediment accumulation rates in the basin reflect the build-up of topography in the Alpine mountain chain. Since approximately 6 Ma a pronounced regional uplift of the entire Molasse basin has taken place, marking the transition from lateral extrusion to orthogonal contraction within the Alpine system and deep-seated changes in geodynamic boundary conditions, possibly due to delamination of previously thickened lithosphere. Surface uplift is contemporaneous with similar processes in extra-Alpine Central Europe, where it is interpreted to reflect intra-plate stress changes.  相似文献   

2.
Middle Pleistocene uplift in the Eifel has been interpreted as the isostatic response of the lithosphere to a deep buoyant hot body. The spatial and temporal distribution of the uplift in the Ardennes–Rhenish Massif Region has recently been constrained by new data of river incision that have been compiled in this work. The uplift distribution can be reproduced using a thin elastic plate model and assuming that the uplift is created by a deep buoyant load, the distribution of which coincides with the weakening. Models incorporating a lithospheric weakening provide a better fit of the observed uplift than models with homogeneous flexural rigidity. These results are confirmed by numerical experiments using a depth-dependent elasto-plastic plate rheology, linking the flexural model with the thermo-mechanical structure of the lithosphere.  相似文献   

3.
Studies of the mid-Norwegian margin reveal that the Fennoscandian continental uplift represents a flexural intraplate deformation event separated in time and space from the regional syn-rift uplift associated with crustal breakup at the Plaeocene-Eocene transition. In the area 64–68°N, the uplift occurred from late Oligocene through Pliocene. During Late Pliocene and Pleistocene times the tectonic uplift was amplified by isostatic rebound in response to the Northern Hemisphere glaciation. The tectonic uplift component reaches 1 km in the northern part of the study area decreasing to the south. The shelf stratigraphy and sediment composition record the combined effects of tectonic uplift, eustatic sea level changes and Neogene climatic deterioration. The coeval uplift and climatic change may suggest causal relations. The resulting depositional model has three stages: (1) late Miocene ( 10.5-5.5 m.y.) increased continental erosion and deposition of prograding wedges most of which were later removed; (2) early-middle Pliocene (5.5-2.6 m.y.) development of extensive local ice-sheets reaching the coastline and deposition of the prominent, oldest Pliocene wedges; (3) Northern Hemisphere glaciation (2.6-0.01 m.y.) resulting in the younger wedges farther west covered by Quaternary deposits. The model is consistent with the development of landforms on the adjacent mainland. Both the tectonic and isostatic components of the Fennoscandian uplift appear to vary in magnitude along the uplift axis, however separation of the syn-rift plate boundary related uplift and the intraplate event support the Neogene age of the main Fennoscandian uplift. We document a correspondence between structural and physiographic margin segmentation and uplift magnitude and suggest that the intraplate deformation has a thermal origin. A hot-cold asthenosphere boundary beneath the Caledonide-Baltic Shield transition combined with pre-Tertiary relief at the base of the lithosphere might induce small-scale convection and preferential volume expansion beneath the observed elongate uplift.  相似文献   

4.
When a mantle plume rises and impinges on the base of the lithosphere, it expectably produces variations in surface topography. Taking into consideration a realistic mantle rheology, plume ascent rates can reach tens to hundreds of metres per year, whereupon the impingement of the plume head at the base of the lithosphere can be considered as an “impact". Recent numerical experiments based on tectonically realistic formulations for the lithosphere and a representative mantle rheology, have shown that plume-induced undulations exhibit temporal successions of uplift and subsidence at various wavelengths. From spectral (Fourier) analyses of the undulations would appear that two groups of wavelengths (200–400 km and 60–100 km) predominate. Interestingly, a spectral analysis of Europe's topography also reveals two dominant groups. In the present study, we have used a spectral analysis with a wavelet formulation in order to discriminate between tectonically-induced undulations (uni-directional deformation) and plume-induced undulations (omni-directional deformation). The European lithosphere is well-suited for this approach since it has been suggested that two mantle plumes (the Massif Central and the Eifel area) underlie Western Europe, where Alpine compression has folded the lithosphere over several hundreds of kilometres. The wavelet analysis of Europe's surface topography confirms that the energy distribution of the topographic undulations outside the two main volcanic provinces is homogeneous, thus contrasting with the coexistence of both large-scale and medium-scale high-energy features that are obtained for the Massif Central and Eifel areas. Similar signatures are also found beneath the northern Sudetes area. The wavelet approach dedicated to the analysis of plume-related topographic signatures needs, however, detailed theoretical grounds and would probably benefit from two-dimensional analyses.  相似文献   

5.
The timing and effect of the Cenozoic uplift of Scandinavia has been investigated using a multi-disciplinary approach involving sedimentological, seismic and biostratigraphic data from the Danish and the adjacent Norwegian parts of the North Sea Basin. It is concluded that significant uplift took place periodically throughout the Palaeogene possibly marking an earlier onset of the so-called “Neogene uplift” of Scandinavia. This conclusion is based on a number of sedimentological observations, including smectite content, grain-size variations, kaolinite thermal stabilities and Tmax values supported by seismic reflection geometries and biostratigraphic data. These data indicate several phases of re-working of Palaeogene and older sediments situated further to the east and northeast during the middle to late Eocene and during the middle to late Oligocene. The tectonic patterns were similar during the late Paleocene and the Oligocene with some inversion taking place, whereas no inversion has been observed during the Eocene. Main provenance areas were to the north and northeast during the Paleocene and Oligocene, whereas the Eocene sediments originate mainly from the British Isles to the west. It is proposed that Palaeogene uplift of Scandinavia was associated with regional tectonic movements along crustal zones of weakness, which were reactivated as they accommodated strain induced by the Alpine Orogeny and the opening of the North Atlantic.  相似文献   

6.
A complex history of Cenozoic vertical movements in the Faroe region has been revealed from interpretation of geophysical and geological data, mainly offshore reflection seismic data, side-scan images, shallow cores, and onshore mapping. The history comprises several phases of tectonic disturbances observed at different scales. On the eastern margin of the Faroe Platform a late Eocene–early Oligocene phase of doming of the Faroe Platform has caused a postdepositional tilting of Eocene strata along the southern margin of the platform; a mid-Miocene phase of compressional tectonics is evidenced on seismic transects as gentle anticlines and associated reverse faults; and possible Pliocene uplift of the Faroe Islands is indicated by a progradational wedge of sediments deposited on the eastern Faroe Platform. At the continental margin/slope north of the Faroe Platform, reflection seismic data imaging the postbasalt sedimentary strata indicate three distinct tectonic events phases in the Eocene–Oligocene, Miocene and Pliocene, respectively. In contrast to the Faroe Platform the Faroe–Shetland Channel was characterised by more or less continuous subsidence dominated throughout the Cenozoic. During the Eocene, sediments deposited in the Faroe–Shetland Channel was mostly derived from a source area on the British shelf.  相似文献   

7.
Present-day stress field and tectonic inversion in the Pannonian basin   总被引:3,自引:1,他引:2  
This paper presents a latest compilation of data on the present-day stress pattern in the Pannonian basin, and its tectonic environment, the Alpine–Dinaric orogens. Extensional formation of the basin system commenced in the early Miocene, whereas its structural reactivation, in the form of gradual basin inversion, has been taking place since Pliocene to recent times. Reconstructed compression and associated horizontal contraction are mainly governed by the convergence between Adria and its buffer, the Alpine belt of orogens. The resulting contemporaneous stress field exhibits important lateral variation resulting in a complex pattern of ongoing tectonic activity. In the Friuli zone of the Southern Alps, where thrust faulting prevails, compression is orthogonal to the strike of the mountain belt. More to the southeast, intense contraction is combined with active strike–slip faulting constituting the dextral Dinaric transpressional corridor. Stresses are transferred far from Adria into the Pannonian basin, and the dominant style of deformation gradually changes from pure contraction through transpression to strike–slip faulting. The importance of late-stage inversion in the Pannonian basin is interpreted in a more general context of structural reactivation of back-arc basins where the sources of compression driving basin inversion are also identified and discussed. The state of recent stress and deformation in the Pannonian basin, particularly in its western and southern part, is governed by the complex interaction of plate boundary and intra-plate forces. The counterclockwise rotation and north-northeast-directed indentation of the Adriatic microplate appears to be of key importance as the dominant source of compression (“Adria-push”). Intra-plate stress sources, such as buoyancy forces associated with an elevated topography, and crustal as well as lithospheric inhomogeneities can also play essential, yet rather local role.  相似文献   

8.
The Spanish Central System is a Cenozoic pop-up with an E–W to NE–SW orientation that affects all the crust (thick-skinned tectonics). It shows antiform geometry in the upper crust with thickening in the lower crust. Together with the Iberian Chain it constitutes the most prominent mountainous structure of the Pyrenean foreland.The evolutionary patterns concerning the paleotopography of the interior of the Peninsula can be established by an analysis of the following data: gravimetric, topographical, macro and micro tectonic, sedimentological (infilling of the sedimentary basins of the relative foreland), P–T–t path from apatite fission tracks, paleoseismic and instrumental seismicity.Deformation is clearly asymmetric in the Central System as evidenced by the existence of an unique, large (crustal-scale) thrust at its southern border, while in the northern one there is a normal sequence of north verging thrusts, towards the Duero Basin, whose activity ended during the Lower Miocene. This deformation was accomplished under triaxial compression, Oligocene–Lower Miocene in age, marked by NW–SE to NNW–SSE shortening. Locally orientations of paleostresses deviate from that of the regional tensor, following a period of relative tectonic quiescence. During the Upper Miocene–Pliocene, a reactivation of constrictive stress occurred and some structures underwent rejuvenation as a consequence of the action of tectonic stresses similar to those of today (uniaxial extension to strike–slip with NW–SE shortening direction). However, the westernmost areas show continuous activity throughout the whole of the Tertiary, with no apparent pulses. At the present time there is a moderate seismic activity in the Central System related to faults that were active during the Cenozoic, with the same kinematic characteristics.  相似文献   

9.
The Brazilian Northeast affords good opportunities for obtaining reliable timings and rates of landscape evolution based on stratigraphic correlations across a vast region. The landscape formed in the context of an episodically fluctuating but continuously falling base level since the Cenomanian. After formation of the transform passive margin in Aptian times, landscape development was further driven by a swell-like uplift with its crest situated  300 km from the coastline. The seaward flank of this swell or broad monocline between the interior Araripe and coastal Potiguar basins was eroded, and currently forms a deeply embayed plain bordered by a semi-circular, north-facing erosional escarpment. The post-Cenomanian uplift caused an inversion of the Cretaceous basins and generated a landscape in which the most elevated landforms correspond either to resistant Mesozoic sedimentary caprock, or to eroded stumps of syn-rift Cretaceous footwall uplands. Denudation in the last 90 My never exceeded mean rates of 10 m·My− 1 and exhumed a number of Cretaceous stratigraphic unconformities. As a result, some topographic surfaces at low elevations are effectively Mesozoic land surfaces that became re-exposed in Cenozoic times. The Neogene Barreiras Formation forms a continuous and mostly clastic apron near the coast. It testifies to the last peak of erosion in the hinterland and coincided with the onset of more arid climates at  13 Ma or earlier. The semi-circular escarpment is not directly related to the initial breakup rift flanks, which had been mostly eroded before the end of the Mesozoic, but the cause and exact timing of post-Cenomanian crustal upwarping are poorly constrained. It could perhaps have been a flexural response of the low-rigidity lithosphere to sediment loads on the margin, and thus a slowly ongoing process since the late Cretaceous. Uplift could instead be the consequence of a more discrete dynamic event related either to Oligocene magmatism in the region, or to continental-scale far-field stresses determined by Andean convergence.  相似文献   

10.
The Upper Rhine Graben (URG), a Cenozoic intra-plate rift situated in the Alpine foreland, is presently characterised by relative slow tectonic deformation and low to medium seismicity. Concurrently, it is a region with a significant amount of ongoing subsidence in two recent depocentres (0.1 to 0.2 mm/a geological, 1 mm/a geodetical rate). In this paper, the recent kinematic behaviour of the URG is simulated using a 3D finite element model, containing three lithospheric layers (upper mantle, lower crust and upper crust) with different rheological properties. First order fault structures (e.g. border faults) are implemented as frictional contact surfaces within the upper crustal layer. The stresses generated by applying lateral displacements over a time period of 10 ka are insufficient to obtain a match between predicted and observed stress magnitudes. Therefore, a technique of “combined pre-stressing” has been developed to avoid unrealistic deformation and unrealistic stress magnitudes within the model. The stress magnitudes and stress directions predicted are calibrated against in-situ stress measurements and stress indicator data. For benchmarking of the modelling results, the vertical surface displacements predicted are compared to surface uplift derived from geological and geomorphological data. Furthermore, predicted fault slip rates are compared to available geological and geodetical data. Parameters derived from the calculated stress tensor, such as fracture potential and the regime stress ratio are also analysed in order to describe the possible kinematic behaviour of the URG. The modelling results suggest that the URG is currently being reactivated as a sinistral strike–slip system with the central segment of the URG forming a restraining bend and the two recent depocentres situated in releasing bend settings. The modelling results suggest that both sinistral shearing and mantle uplift are active mechanisms driving the recent kinematics of the URG and that the recent subsidence within the two depocentres is re-enforced by ongoing mantle uplift additionally.  相似文献   

11.
We use a climate model (GENESIS) to simulate the changes in climate associated with two scenarios, one from the past and one from the future, with a focus on the Asian continent. The two scenarios are: (1) Early Miocene to Present—a period of uplift of the Himalayan–Tibetan plateau and of decreasing concentration of atmospheric carbon dioxide, and (2) Present to Future Enhanced Greenhouse—a period of increasing concentration of atmospheric carbon dioxide. In the past climate scenario, the combination of uplift and decreased concentration of greenhouse gas causes the model to simulate widespread cooling and, primarily due to the effect of uplift, greatly increased precipitation in southern Asia and decreased precipitation in northern Asia. In the future climate scenario, the increased concentration of atmospheric carbon dioxide causes the model to simulate widespread warming and, by comparison with the past climate scenario, relatively small changes in precipitation; the changes are generally towards increased precipitation, except in parts of northern China. The output of the climate model, along with the changed concentration of atmospheric carbon dioxide, is also used to calculate changes in biome distributions. Owing to the high concentrations of atmospheric carbon dioxide in both the past and future scenarios, relative to present, the simulations of Early Miocene biomes and Future biomes are somewhat similar—and both are very unlike the Present.  相似文献   

12.
Multi-channel seismic lines off southern and central West Greenland show a >3-km-thick sedimentary section of mid-Eocene and younger age that dips seaward and is truncated either at the seabed or by an erosional unconformity a short distance below the seabed. This pattern indicates that there has been uplift and erosion of the section and probably of the nearby landmass. The timing of the uplift is not well constrained by borehole data, but certainly took place after the early Eocene, probably during the Neogene and possibly as late as the onset of glaciation in West Greenland in the early Pliocene. The uplift took place substantially later than the cessation of magmatism in the early Eocene and the abrupt slowing or cessation of sea-floor spreading in the Labrador Sea between Chrons 20 and 13 (middle–late Eocene). This means that, whatever the cause of the uplift, it is unlikely to be directly related to processes either of magmatic emplacement or sea-floor spreading.  相似文献   

13.
The quantification of geohazards and water resources in intraplate areas requires an integrated approach connecting monitoring, reconstruction and prediction of underlying processes. Intraplate rifts such as the Northwestern European rift system and coastal areas such as the Rhine–Meuse delta system are characterized by an interplay of climatic variations and neotectonics. The Netherlands Environmental Earth System Dynamics Initiative (NEESDI) addresses the interplay of lithosphere and surface processes through an integration of upper mantle and crustal scale studies with high-resolution analyses of the sedimentary record, geomorphology and hydrodynamic regime. Recent faulting imaged by seismic reflection data and trenching appears to exert a major control on uplift and subsidence patterns in the area, effecting coastal evolution and river dynamics in the Rhine–Meuse system.  相似文献   

14.
Most of the East European Craton lacks surface relief; however, the amplitude of topography at the top of the basement exceeds 20 km, the amplitude of topography undulations at the crustal base reaches almost 30 km with an amazing amplitude of ca. 50 km in variation in the thickness of the crystalline crust, and the amplitude of topography variations at the lithosphere–asthenosphere boundary exceeds 200 km. This paper examines the relative contributions of the crust, the subcrustal lithosphere, and the dynamic support of the sublithospheric mantle to maintain surface topography, using regional seismic data on the structure of the crystalline crust and the sedimentary cover, and thermal and large-scale P- and S-wave seismic tomography data on the structure of the lithospheric mantle. For the Precambrian lithosphere, an analysis of Vp/Vs ratio at 100, 150, 200, and 250 km depths does not show any age-dependence, suggesting that while Vp/Vs ratio can be effectively used to outline the cratonic margins, it is not sensitive to compositional variations within the cratonic lithosphere.Statistical analysis of age-dependence of velocity, density, and thermal structure of the continental crust and subcrustal lithosphere in the study area (0–62E, 45–72N) allows to link lithospheric structure with the tectonic evolution of the region since the Archean. Crustal thickness decreases systematically with age from 42–44 km in regions older than 1.6 Ga to 37–40 km in the Paleozoic–Mesoproterozoic structures, and to ca. 31 km in the Meso-Cenozoic regions. However, the isostatic contribution of the crust to the surface topography of the East European Craton is almost independent of age (ca. 4.5 km) due to an interplay of age-dependent crustal and sedimentary thicknesses and lithospheric temperatures.On the contrary, the contribution of the subcrustal lithosphere to the surface topography strongly depends on the age, being slightly positive (+ 0.3 + 0.7 km) for the regions older than 1.6 Ga and negative (− 0.5–1 km) for younger structures. This leads to age-dependent variations in the residual topography, i.e. the topography which cannot be explained by the assumed thermal and density structure of the lithosphere, and which can (at least partly) originate from the dynamic component caused by the mantle flow. Positive dynamic topography at the cratonic margins, which exceeds 2 km in the Norwegian Caledonides and in the Urals, clearly links their on-going uplift with deep mantle processes. Negative residual topography beneath the Archean-Paleoproterozoic cratons (− 1–2 km) indicates either a smaller density deficit (ca. 0.9%) in their subcrustal lithosphere than predicted by global petrologic data on mantle-derived xenoliths or the presence of a strong convective downwelling in the mantle. Such mantle downflows can effectively divert heat from the lithospheric base, leading to a long-term survival of the Archean-Paleoproterozoic lithosphere.  相似文献   

15.
More than seventy-five vertebrate track-sites have been found in Central Europe in 243–246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles, possibly Euparkeria, probably made the Brachychirotherium trackways that have been found across much of Central Europe. Large lepidosaurs such as Tanystrophaeus probably hunted in the tidal ponds and channels, where they locally produced Synaptichnium tracks. Recently discovered tracks made by a basal prosauropod are the world's oldest record of this group of dinosaurs, occurring in beds that have an age of about 243.5 Ma. (Pelsonian substage). This shows that very large prosauropods existed much earlier than was previously believed. These prosauropod tracks, along with tracks of small bipedal dinosaurs found in the Alps and Eastern France, show that by the middle part of the Middle Triassic the radiation and diversification of dinosaurs was already in progress. In the Germanic Basin, aquatic-adapted paraxial swimming sauropterygians are not known to have left tracks, except for occasional subaquatic swimming scratch-mark “trackways” within the coastal tidal flat zone. Marine-adapted aquatic reptiles migrated into the Germanic Basin with increasing frequency in the upper part of the Middle Triassic, when the bathymetry of the Germanic Basin was at its deepest following a strong regression that occurred due to basin uplift in the middle part of the Middle Triassic. These large marine reptiles included Pistosaurus, the ichthyosaurs Cymbospondylus or Mixosaurus, and many placodonts such as Cyamodus, Placodus and Paraplacodus, which fed on macroalgae and seem to have been the Triassic sea cows of their day. The distribution of these reptiles was mainly controlled by tectonics, but eustatic changes in sea level also were important and produced widespread environmental changes across the tidal flats up until their disappearance in the Germanic Basin in the late Middle Triassic. The initial break-up of Pangaea already had started in Middle Triassic time, and this event had begun to drastically change environments all over Central Europe. It is very interesting that dinosaurs began to diversify at exactly this time, and it seems likely that this was a direct reaction to these environmental changes. It can be inferred that the earliest dinosaurs must have started to evolve in the late Early Triassic, because in Europe it can be demonstrated that at least two main dinosaur groups already were present and clearly differentiated by the middle part of the Middle Triassic, and all three of the major groups of dinosaurs (theropods, sauropods and ornithischians) had diversified and spread globally throughout terrestrial habitats by the end of the Triassic Period. Six new palaeogeographic maps, representing time intervals from the Aegean to the Illyrian (Anisian) stages, show these important environmental changes in detail and explain the direction and timing of terrestrial reptile exchanges between the Central Massif, Rhenish Massif, and Bohemian Massif, and also the direction and timing of marine reptile exchanges between the Alps of Central Pangaea and the ancient northern Tethys Ocean and Germanic Basin Sea.  相似文献   

16.
Stress models for Tharsis formation, Mars   总被引:1,自引:0,他引:1  
A critical survey is presented of most stress models proposed for the formation of the tectonic structures in the Tharsis volcano-tectonic province on Mars and provides new constraints for further models. First papers, in the 1970s, attempted to relate the Tharsis formation to asthenospheric movements and lithosphere loading by magma bodies. These processes were then quantified in terms of stress trajectory and magnitude models in elastic lithosphere (e.g. Banerdt et al., J. Geophys. Res. 87(B12), 9723–9733, 1982). Stresses generated by dynamic lithosphere uplift were rapidly dismissed because of the poor agreement between the stress trajectories provided by the elastic models and the structural observations. The preferred stress models involved lithosphere loading, inducing isostatic compensation, and then lithosphere flexure. Some incomsistency with structural interpretation of Viking imagery has been found. In the early 1990s, an attempt to solve this problem resulted in a model involving the existence of a Tharsis-centred brittle crustal cap, deteched from the strong mantle by a weak crustal layer (Tanaka et al., J. Geophys. Res. 96(E1), 15617–15633, 1991). Such a configuration should produce loading stresses akin to those predicted by some combination of the two loading modes. This model has not been quantified yet, however it is expected to reconcile stress trajectories and most structural patterns. Nevertheless, some inconsistencies with observed structures are also expected to remain. Parallel to this approach focused on loading mechanisms, the idea that volcanism and tectonic structures could be related to mantle circulation began to be considered again through numerical convection experiments, whose results have however not been clearly correlated with surface observations. Structural clues to early Tharsis dynamic uplift are reported. These structures have little to do with those predicted by elastic stress modelling of dynamic lithosphere uplift. They denote the existence of unsteady stress trajectories responsible for surface deformations that cannot be readily predicted by elastic models. These structures illustrate that improving current stress models for Tharsis formation shall come from deeper consideration of rock failure criterion and load growth in the lithosphere (e.g. Schultz and Zuber, J. Geophys. Res. 99(E7), 14691–14702, 1994). Improvements should also arise from better understanding rheological layering in the lithosphere and its evolution with time, and from consideration of stress associated to magma emplacement in the crust, which may have produced many tectonic structures before loading stress resulting from magma freezing became significant (Mège and Masson, Planet. Space Sci. 44, 1499–1546, 1996a).  相似文献   

17.
The relationship between the Ricker Hills Tillite (RHT), which represents the northernmost outcrop of lithified continental glacial deposits in Victoria Land, is discussed with respect to the glacial landscape assemblage of the Ricker Hills, a nunatak at the internal border of the Transantarctic Mountains. A warm-based ice sheet deposited the tillite and induced syn- to post-depositional glacial deformation under wet conditions both of the tillite and of the bedrock. The thickness of the ice sheet on the nunatak is estimated to have been 600 m, at most. The area had been deeply eroded before deposition of the RHT as documented by the low elevation of tillite outcrops located in overdeepened depressions of the nunatak. Micropaleontological analysis evidences only the presence of Permian to Jurassic palynomorphs. X-ray diffraction and SEM–EDS analyses of clay minerals in the RHT indicate continental chemical weathering under wet conditions after the RHT deposition. As documented by clay mineral assemblage variation in CRP drillholes, the progressive cooling of the Antarctic continent allowed chemical weathering in “warm” conditions until the Late Oligocene period in southern Victoria Land, leading to a chronological constrain for RHT deposition. Conservatively estimating the sea level to have been between the tillite outcrops and the erosional trimline limiting horns in the Ricker Hills, at the time of RHT deposition, we suggest that the maximum uplift of the area would not have exceeded 900–1500 m since at least Late Oligocene.  相似文献   

18.
The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene. In response to the uplift of the Ardennes, the river system incised and a terrace sequence developed during the Plio–Pleistocene. The sediments generated by erosion in the catchment were transported into the RVRS and further to the north, into the Zuiderzee Basin and the North Sea Basin. Using a digital terrain model, the amount of eroded rock volume versus time for the Meuse catchment has been computed using the Paleogene and older planation surfaces and the fluvial terraces. Comparison of the amount of eroded material with the volume of sediment preserved in the RVRS for the early Middle Pleistocene shows that about 17.5% of the sediment volume transported into the RVRS remained there, the rest being transported further into the Zuiderzee Basin and the North Sea Basin. The Quaternary tectonic uplift of the Ardennes inferred from the incision history of the Meuse river system is characterized by a long-term uplift, on which a Middle Pleistocene acceleration is superimposed. The accelerated uplift is contemporaneous with an uplift event in the RVRS and in the neighbouring Eifel area, and with the onset of the youngest phase of volcanism in the Eifel area. The areal distribution of this uplift is characterized by a dome shape centered around the Eifel area.  相似文献   

19.
Late Cenozoic terrestrial deposits are widespread across the northern coastal regions of the Black Sea and the Sea of Azov and represent diverse fluvial, estuarine and deltaic environments. The dating and correlation of these deposits rely on stratigraphically-associated marine index beds, mammalian and molluscan faunas and magnetostratigraphy. In detail the geometries of these sediment bodies are extremely complex, typically varying between localities and representing many cycles of incision and aggradation. However, the overall disposition of the sediments reflects the transition from the uplifting sediment source region to the north and the subsiding depocentre in the interior of the Black Sea to the south. Since the Middle Miocene the area of the Paratethys/Black Sea depocentre has decreased significantly, but since the Middle Pliocene the hinge zone between uplift and subsidence has been located close to the modern coastline. A combination of regional and local differential crustal movements has given rise to the great variety of fluvial sediment bodies, to the erosion–aggradation cycles, different phases and river activity and to the various fluvial landforms that have all been important in landscape development in this region during the past 12 Ma. The fluvial erosion–accumulation cycles (during the upper Serravillian–Messinian, the Zanclean–late Gelasian, and the Pleistocene) and corresponding cycles of relief dissection and planation are reconstructed against a background of local sea-level changes and climatic variations determined from palaeobotanical data. The maximum fluvial incision occurred in the early Zanclean time with alluvial coastal plains, unique in this area, developing in the Gelasian. Increased climatic aridity during the Pleistocene caused a reduction of fluvial activity in comparison with the Late Miocene and Pliocene. The sea-level oscillations and Pleistocene glaciations affected fluvial processes in different ways. The most remarkable events were the substantial reduction of fluvial activity during the Messinian dessication in the Black Sea and drainage of the shelf, with intensive dissection, coeval with the Last Glaciation.  相似文献   

20.
The Czech Republic comprises two geologically diverse provinces. The western part is an ancient, long-stabilized crystalline (slowly uplifting) massif, the Bohemian Massif, whereas the eastern part is the younger and tectonically more mobile Carpathian Foredeep and the West Carpathian mountain ranges. The Late Cenozoic fluvial record, controlled in essence by cyclic climate-driven changes of the environment shows discernible differences in both provinces and, therefore, the paper deals with these separately. In the Bohemian Massif a regular development of terrace staircases is noted, making internally consistent correlation possible. Problems that remain open to debate include dating the start of fluvial terrace staircase development, and correlating the fluvial terraces with the succession of Scandinavian glaciations that have affected the northernmost Czech Republic. On the other hand, the fluvial records in the southeastern Czech Republic show significant lateral variations; thus, northern, central and southern Moravia are reviewed separately in this paper. The terrace system in northern Moravia formed in direct contact with the ice sheet during two Scandinavian glaciations, whereas only periglacial or extraglacial conditions developed further south. Nevertheless, the existence of the Main Terrace as an important stratigraphical index horizon allows the reliable correlation of the terrace systems of all the larger Moravian rivers, despite their fragmentary development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号