首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the Galactic disc distribution of a sample of planetary nebulae characterized in terms of their mid-infrared spectral features. The total number of Galactic disc PNe with 8–13 μm spectra is brought up to 74 with the inclusion of 24 new objects, the spectra of which we present for the first time. 54 PNe have clearly identified warm dust emission features, and form a sample that we use to construct the distribution of the C/O chemical balance in Galactic disc PNe. The dust emission features complement the information on the progenitor masses brought by the gas-phase N/O ratios: PNe with unidentified infrared emission bands have the highest N/O ratios, while PNe with the silicate signature have either very high N enrichment or close to none. We find a trend for a decreasing proportion of O-rich PNe towards the third and fourth Galactic quadrants. Two independent distance scales confirm that the proportion of O-rich PNe decreases from     per cent inside the solar circle to     per cent outside. PNe with warm dust are also the youngest. PNe with no warm dust are uniformly distributed in C/O and N/O ratios, and do not appear to be confined to     They also have higher 6-cm fluxes, as expected from more evolved PNe. We show that the IRAS fluxes are a good representation of the bolometric flux for compact and IR-bright PNe, which are probably optically thick. Selection of objects with     should probe a good portion of the Galactic disc for these young, dense and compact nebulae, and the dominant selection effects are rooted in the PN catalogues.  相似文献   

2.
We have studied the chemistry of the molecular gas in evolved planetary nebulae. Three pseudo-time-dependent gas-phase models have been constructed for dense (104–105 cm−3) and cool ( T ∼15 K) clumpy envelopes of the evolved nebulae NGC 6781, M4-9 and NGC 7293. The three nebulae are modelled as carbon-rich stars evolved from the asymptotic giant branch to the late planetary nebula phase. The clumpy neutral envelopes are subjected to ultraviolet radiation from the central star and X-rays that enhance the rate of ionization in the clumps. With the ionization rate enhanced by four orders of magnitude over that of the ISM, we find that resultant abundances of the species HCN, HNC, HC3N and SiC2 are in good agreement with observations, while those of CN, HCO+, CS and SiO are in rough agreement. The results indicate that molecular species such as CH, CH2, CH2+ , HCl, OH and H2O are anticipated to be highly abundant in these objects.  相似文献   

3.
The little studied PN, Sa 2-21 has been observed using the Manchester echelle spectrometer at the Anglo-Australian telescope. Narrow band, long-slit spectra were obtained at six positions over two perpendicular position angles in both the [N ii ]λ6584  Å and [O iii ]λ5007  Å emission lines. An [O iii ] halo has been detected for the first time. A morphological modelling program was used to help determine the geometry, structure and kinematics of this ellipsoidal PN. It is proposed that the structure includes a pair of mid-latitude rings of [N ii ] emission, not previously seen in elliptical PNe. Radial spokes of [O iii ] emission have been detected in the main nebular shell indicating the presence of dynamical instabilities.  相似文献   

4.
We have analysed the near-infrared (NIR) and far-infrared (FIR) colours of MASH I and MASH II (the Macquarie/AAO/Strasbourg surveys) planetary nebulae (PNe), using data deriving from the Two-Micron All-Sky Survey and Infrared Astronomical Satellite . We were able to identify ∼5 per cent of the sources in the NIR, and a slightly larger fraction (∼12 per cent) in the FIR. It is concluded that whilst the NIR colours of these nebulae are consistent with those of less evolved (and higher surface brightness) PNe, their FIR colours are markedly different. This disparity is likely to arise as a result of an evolution in dust temperatures, in their line emission characteristics, and in the relative contributions of the 8.6 and 11.3 μm polycyclic aromatic hydrocarbon emission features. A rump of ∼9 per cent of the detected sources have values  log[ F (25 μm)/ F (60 μm)]  which are lower than can be explained in terms of normal nebular evolution, however. If these are comparable in nature to the undetected PNe, then this would argue that ∼1 in 10 of MASH I and II nebulae may represent galactic H  ii regions, Stromgren spheres, symbiotic nebulae or other unrelated categories of source.  相似文献   

5.
Certain hydrodynamic models of planetary nebulae (PNe) suggest that their shells possess appreciable radial density gradients. However, the observational evidence for such gradients is far from clear. On the one hand, Taylor et al. claim to find evidence for radio spectral indices  0.6 < α < 1.8  , a trend which is taken to imply a variation   n e∝ r −2  in most of their sample of PNe. On the other hand, Siódmiak & Tylenda find no evidence for any such variations in density; shell inhomogeneities, where they occur, are primarily attributable to 'blobs or condensations'.
It will be suggested that both of these analyses are unreliable, and should be treated with a considerable degree of caution. A new analysis within the  log( F (5 GHz)/ F (1.4 GHz))–log( T B(5 GHz))  plane will be used to show that at least 10–20 per cent of PNe are associated with strong density gradients. We shall also show that the ratio   F (5 GHz)/ F (1.4 GHz)  varies with nebular radius; an evolution that can be interpreted in terms of varying shell masses, and declining electron densities.  相似文献   

6.
We present mid-infrared (MIR) photometry for 367 Galactic disc, bulge and Large Magellanic Cloud (LMC) planetary nebulae (PNe), determined using data acquired with the Spitzer Space Telescope , and through the Legacy Programs GLIMPSE II (Galactic Legacy Infrared Mid-plane Survey Extraordinaire II) and SAGE (Surveying the Agents of the Galaxy's Evolution). This has permitted us to make a comparison between the luminosity functions of bulge and LMC PNe, and between the MIR colours of all three categories of source. It is determined that whilst the  3.6 μm  luminosity functions of the LMC and bulge sources are likely to be closely similar, the [3.6]–[5.8] and [5.8]–[8-0] indices of LMC nebulae are different from those of their disc and bulge counterparts. This may arise because of enhanced  6.2 μm  polycyclic aromatic hydrocarbon emission within the LMC sources, and/or as a result of further, and more radical differences between the spectra of LMC and Galactic PNe. We also determine that the more evolved disc sources listed in the Macquarie/AAO/Strasbourg (MASH) catalogues of Parker et al. and Miszalski et al. have similar colours to those of the less evolved (and higher surface brightness) sources in the catalogue of Acker et al., a result which appears at variance with previous studies of these sources.  相似文献   

7.
We report our initial discovery of 73 new planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) following confirmatory 2dF spectroscopy on the Anglo-Australian Telescope. Preliminary candidate sources come from a 10 per cent sub-area of our new deep, high-resolution Hα map of the central 25 deg2 of the LMC obtained with the UK Schmidt Telescope. The depth of the high-resolution map was extended to   R equiv∼ 22  for  Hα (4.5 × 10−17 erg cm−2 s−1Å−1)  by a process of multi-exposure median co-addition of a dozen 2-h Hα exposures. The resulting map is at least 1-mag deeper than the best wide-field narrow-band LMC images currently available. This depth, combined with our selection technique, has also led to the discovery of extended asymptotic giant branch (AGB) haloes around many new and previously known LMC PNe for the first time. Once complete, our new survey is expected to triple the LMC PN population and have significant implications for the LMC PN luminosity function, kinematics, abundance gradients, chemical evolution and, via study of the AGB haloes, the initial to final mass relation for low- to intermediate-mass stars.  相似文献   

8.
The central stars of highly evolved planetary nebulae (PNe) are expected to have closely similar absolute visual magnitudes MV . This enables us to determine approximate distances to these sources where one knows their central star visual magnitudes, and levels of extinction. We find that such an analysis implies values of D which are similar to those determined by Phillips; Cahn, Kaler & Stanghellin; Acker, and Daub. However, our distances are very much smaller than those of Zhang; Bensby & Lundstrom, and van de Steene & Zijlstra. The reasons for these differences are discussed, and can be traced to errors in the assumed relation between brightness temperature and radius.
Finally, we determine that the binary companions of such stars can be no brighter than   MV ∼ 6 mag  , implying a spectral type of K0 or later in the case of main-sequence stars.  相似文献   

9.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

10.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

11.
A significant fraction of planetary nebulae (PNe) and protoplanetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however, recent evidence suggests that many observed PNe harbour binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass  (<0.3 M)  companions (planets, brown dwarfs and low-mass main-sequence stars) embedded into the envelope of a  3.0-M  star during three epochs of its evolution [red giant branch, asymptotic giant branch (AGB), interpulse AGB]. We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo-driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc-driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.  相似文献   

12.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

13.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

14.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

15.
The low excitation properties of the planetary nebula (PN) NGC 6720 are known to be unusual, and to imply large ring/core emission ratios. We point out that such characteristics are by no means confined to this source alone, and that high ratios may occur in a large fraction of elliptical and circular PNe. Such trends may arise because of the presence of thin low-excitation emission sheets 'wrapped' within and around the primary outflows. The widths of such shells are required to be exceedingly small, and may (for certain cases) be of order ≪10−2 pc. Such a mechanism appears capable of explaining most of the observed emission properties, and may arise through shock interaction between differing envelopes. Alternative explanations in terms of bipolar or cylindrical outflows are shown to be implausible.  相似文献   

16.
We have observed a large sample of compact planetary nebulae in the near-infrared to determine how the 21P–21S He  i line at 2.058 μm varies as a function of stellar effective temperature, T eff. The ratio of this line with H  i Br γ at 2.166 μm has often been used as a measure of the highest T eff present in a stellar cluster, and hence of whether there is a cut-off in the stellar initial mass function at high masses. However, recent photoionization modelling has revealed that the behaviour of this line is more complex than previously anticipated. Our work shows that in most aspects the photoionization models are correct. In particular, we confirm the weakening of the 21P–21S line as T eff increases beyond 40 000 K. However, in many cases the model underpredicts the observed ratio when we consider the detailed physical conditions in the individual planetary nebulae. Furthermore, there is evidence that there is still significant 21P–21S He  i line emission even in the planetary nebulae with very hot     central stars. It is clear from our work that this ratio cannot be considered as a reliable measure of effective temperature on its own.  相似文献   

17.
The core of planetary nebula NGC 6302 is filled with high-excitation photoionized gas at low expansion velocities. It represents a unique astrophysical situation in which to search for hyperfine structure (HFS) in coronal emission lines from highly ionized species. HFS is otherwise blended by thermal or velocity broadening. Spectra containing  [Al  vi ] 3.66 μm 3P23P1  , obtained with Phoenix on Gemini South at resolving powers of up to 75 000, resolve the line into five hyperfine components separated by 20–60 km s−1 as a result of the coupling of the   I = 5/2  nuclear spin of 27Al with the total electronic angular momentum J . The isotope 26Al has a different nuclear spin of   I = 5  , and a different HFS, which allows us to place a 3σ upper limit on the 26Al/27Al abundance ratio of 1/33. We measure the HFS magnetic dipole coupling constants for [Al  vi ], and provide the first estimates of the electric quadrupole HFS coupling constants obtained through astronomical observations of an atomic transition.  相似文献   

18.
We have used 2 Micron All Sky Survey (2MASS) mapping results to investigate the distribution of hot dust continua in 12 planetary nebulae (PNe). The nature of this emission is unclear, but it is possible that where the continuum is extended, as is the case for M 1-12 and NGC 40, then the grains concerned may be very small indeed. The absorption of individual photons by such grains may lead to sharp spikes in temperature, as has previously discussed for several other such outflows. Other sources (such as MaC 1-4, He 2-25, B1 2-1 and K 3-15) appear to be relatively compact, and the high temperatures observed are understandable in terms of more normal heating processes. It is possible that the grains in these cases are experiencing high radiant flux levels.
Finally, it is noted that whilst the core of M 2-2 appears to show hot grain emission, this is less the case for its more extended envelope. The situation may, in this case, be similar to that of NGC 2346, in which much of the emission is located within an unresolved nucleus. Similarly, it is noted that in addition to hot dust and gas thermal continua, the emission in the interior of NGC 40 may be enhanced through rotational–vibrational transitions of H2, and/or the 2p3P0–2s3S transition of He  i .  相似文献   

19.
We present ISO observations of A58 and A78. Both objects are suspected to have undergone late He flashes ('born-again' nebulae). With ISOCAM we have been able to obtain data of much higher spatial resolution over the wavelength range 4.5–18 μm than has been possible in the past. In order to extract full information from our data we have developed a method to eliminate residual variations in the dark field. The results for A58 and A78 are compared with literature data and with A30 – the most prominent 'born-again' planetary nebula (PN).  相似文献   

20.
We have undertaken echelle spectroscopy and narrow-band line imaging of the bipolar planetary nebula M 1-8. This has permitted us to map the outflow in [N  ii ]λλ 6548+6583 Å, Hα, and in the v = 1–0 S(1) transition of H2 at λ 2.122 μm. It has also permitted us to acquire high-resolution spectra for [N  ii ]λ 6583 Å, Hα and He  ii λ 6560 Å. Our observations support the results of a previous 2MASS analysis by two of the authors (J. P. Phillips and G. Ramos-Larios), and confirm that there is strong H2 emission outside of the ionized zone, as well as along the major axis of the outflow. Finally, we have investigated the spatial structure of the outflow in low and high excitation lines, and noted evidence for strong ionization stratification within the envelope of the source. We also note that major axis spectra show asymmetries attributable to outflow along the lobes, oriented at an angle i ∼ 35°–40° to the line of sight. Asymmetries along the minor axis, by contrast, appear to be associated with the central collimating disc, and may be interpretable in terms of asymmetries in disc structure, or rotation at an angular velocity of Ω∼ 1.4 10−12 rad s−1. If the disc arises due to common-envelope evolution, then it seems that angular momentum constraints must be relatively tight, and can only be satisfied given fairly extreme physical assumptions (such as low disc mass, high primary star mass, a low distance to the source and so forth).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号