首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geographically Weighted Regression (GWR) is a method of spatial statistical analysis allowing the modeled relationship between a response variable and a set of covariates to vary geographically across a study region. Its use of geographical weighting arises from the expectation that observations close together by distance are likely to share similar characteristics. In practice, however, two points can be geographically close but socially distant because the contexts (or neighborhoods) within which they are situated are not alike. Drawing on a previous study of geographically and temporally weighted regression, in this article we develop what we describe as contextualized Geographically Weighted Regression (CGWR), applying it to the field of hedonic house price modeling to examine spatial heterogeneity in the land parcel prices of Beijing, China. Contextual variables are incorporated into the analysis by adjusting the geographical weights matrix to measure proximity not only by distance but also with respect to an attribute space defined by measures of each observation's neighborhood. Comparing CGWR with GWR suggests that adding the contextual information improves the model fit.  相似文献   

2.
This study evaluates the influences of air pollution in China using a recently proposed model—multi‐scale geographically weighted regression (MGWR). First, we review previous research on the determinants of air quality. Then, we explain the MGWR model, together with two global models: ordinary least squares (OLS) and OLS containing a spatial lag variable (OLSL) and a commonly used local model: geographically weighted regression (GWR). To detect and account for any variation of the spatial autocorrelation of air pollution over space, we construct two extra local models which we call GWR with lagged dependent variable (GWRL) and MGWR with lagged dependent variable (MGWRL) by including the lagged form of the dependent variable in the GWR model and the MGWR model, respectively. The performances of these six models are comprehensively examined and the MGWR and MGWRL models outperform the two global models as well as the GWR and GWRL models. MGWRL is the most accurate model in terms of replicating the observed air quality index (AQI) values and removing residual dependency. The superiority of the MGWR framework over the GWR framework is demonstrated—GWR can only produce a single optimized bandwidth, while MGWR provides covariate‐specific optimized bandwidths which indicate the different spatial scales that different processes operate.  相似文献   

3.
Based on remote sensing and GIS, this study models the spatial variations of urban growth patterns with a logistic geographically weighted regression (GWR) technique. Through a case study of Springfield, Missouri, the research employs both global and local logistic regression to model the probability of urban land expansion against a set of spatial and socioeconomic variables. The logistic GWR model significantly improves the global logistic regression model in three ways: (1) the local model has higher PCP (percentage correctly predicted) than the global model; (2) the local model has a smaller residual than the global model; and (3) residuals of the local model have less spatial dependence. More importantly, the local estimates of parameters enable us to investigate spatial variations in the influences of driving factors on urban growth. Based on parameter estimates of logistic GWR and using the inverse distance weighted (IDW) interpolation method, we generate a set of parameter surfaces to reveal the spatial variations of urban land expansion. The geographically weighted local analysis correctly reveals that urban growth in Springfield, Missouri is more a result of infrastructure construction, and an urban sprawl trend is observed from 1992 to 2005.  相似文献   

4.
The realization in the statistical and geographical sciences that a relationship between an explanatory variable and a response variable in a linear regression model is not always constant across a study area has led to the development of regression models that allow for spatially varying coefficients. Two competing models of this type are geographically weighted regression (GWR) and Bayesian regression models with spatially varying coefficient processes (SVCP). In the application of these spatially varying coefficient models, marginal inference on the regression coefficient spatial processes is typically of primary interest. In light of this fact, there is a need to assess the validity of such marginal inferences, since these inferences may be misleading in the presence of explanatory variable collinearity. In this paper, we present the results of a simulation study designed to evaluate the sensitivity of the spatially varying coefficients in the competing models to various levels of collinearity. The simulation study results show that the Bayesian regression model produces more accurate inferences on the regression coefficients than does GWR. In addition, the Bayesian regression model is overall fairly robust in terms of marginal coefficient inference to moderate levels of collinearity, and degrades less substantially than GWR with strong collinearity.  相似文献   

5.
 Industry is the most important sector in the Chinese economy. To identify the spatial interaction between the level of regional industrialisation and various factors, this paper takes Jiangsu province of China as a case study. To unravel the existence of spatial nonstationarity, geographically weighted regression (GWR) is employed in this article. Conventional regression analysis can only produce `average' and `global' parameter estimates rather than `local' parameter estimates which vary over space in some spatial systems. Geographically weighted regression (GWR), on the other hand, is a relatively simple, but useful new technique for the analysis of spatial nonstationarity. Using the GWR technique to study regional industrialisation in Jiangsu province, it is found that there is a significant difference between the ordinary linear regression (OLR) and GWR models. The relationships between the level of regional industrialisation and various factors show considerable spatial variability. Received: 4 April 2001 / Accepted: 17 November 2001  相似文献   

6.
This study analyses the relationship between fire incidence and some environmental factors, exploring the spatial non-stationarity of the phenomenon in sub-Saharan Africa. Geographically weighted regression (GWR) was used to study the above relationship. Environment covariates comprise land cover, anthropogenic and climatic variables. GWR was compared to ordinary least squares, and the hypothesis that GWR represents no improvement over the global model was tested. Local regression coefficients were mapped, interpreted and related with fire incidence. GWR revealed local patterns in parameter estimates and also reduced the spatial autocorrelation of model residuals. All the covariates were non-stationary and in terms of goodness of fit, the model replicates the data very well (R 2 = 87%). Vegetation has the most significant relationship with fire incidence, with climate variables being more important than anthropogenic variables in explaining variability of the response. Some coefficient estimates exhibit locally different signs, which would have gone undetected by a global approach. This study provides an improved understanding of spatial fire–environment relationships and shows that GWR is a valuable complement to global spatial analysis methods. When studying fire regimes, effects of spatial non-stationarity need to be incorporated in vegetation-fire modules to have better estimates of burned areas and to improve continental estimates of biomass burning and atmospheric emissions derived from vegetation fires.  相似文献   

7.
This research uses the most recent (2003) census data and a Landsat ETM+ image to build a population estimation model for Port-au-Prince, Haiti. The purpose of the study is to establish the linkage of population density with remotely sensed surface reflectance signals of an urban area, and use that to estimate population when census data are not available in a timely fashion. The research begins with deriving subpixel vegetation-impervious surface-soil (VIS) fractions derived from the Landsat ETM+ multispectral bands, and then uses the geographically weighted regression (GWR) model to examine how the variation of population density can be explained by the VIS variables and their derivatives. With comparison to the ordinary least square (OLS) model, the GWR model accounts for spatial non-stationarity in the relationship between population patterns and land characteristics in the study area. The study reveals that three VIS variables are significant in explaining population density: the mean value of houses fraction image, the mean value of vegetation fraction image, and the standard deviation of vegetation fraction image.  相似文献   

8.
Present methodological research on geographically weighted regression (GWR) focuses primarily on extensions of the basic GWR model, while ignoring well-established diagnostics tests commonly used in standard global regression analysis. This paper investigates multicollinearity issues surrounding the local GWR coefficients at a single location and the overall correlation between GWR coefficients associated with two different exogenous variables. Results indicate that the local regression coefficients are potentially collinear even if the underlying exogenous variables in the data generating process are uncorrelated. Based on these findings, applied GWR research should practice caution in substantively interpreting the spatial patterns of local GWR coefficients. An empirical disease-mapping example is used to motivate the GWR multicollinearity problem. Controlled experiments are performed to systematically explore coefficient dependency issues in GWR. These experiments specify global models that use eigenvectors from a spatial link matrix as exogenous variables.This study was supported by grant number 1 R1 CA95982-01, Geographic-Based Research in Cancer Control and Epidermiology, from the National Cancer Institute. The author thank the anonymous reviewers and the editor for their helpful comments.  相似文献   

9.
互联网记录了人们的日常生活,对带有位置信息的搜索引擎数据进行分析和挖掘可以获得隐藏于其中的地理信息。本文通过分析中国各省流感月度发病数与相关关键词百度搜索指数之间的相关性,选取相关性较高关键词的百度指数作为解释变量,发病数作为因变量,在采用主成分分析法消除变量共线性后,分别使用普通最小二乘回归(OLS)、地理加权回归(GWR)及时空地理加权回归(GTWR)构建流感发病数的空间分布模型。模型的拟合度能够从OLS的0.737、GWR的0.915提高到GTWR的0.959,赤池信息准则(AIC)也表明,GTWR模型明显优于OLS与GWR模型。验证结果显示,GTWR模型能准确识别流感高发地区,将该方法与搜索引擎数据结合能较好地模拟流感空间分布,为空间流行病学的研究提供预测模型和统计解释。  相似文献   

10.
This study deals with the issue of extreme coefficients in geographically weighted regression (GWR) and their effects on mapping coefficients using three datasets with different spatial resolutions. We found that although GWR yields extreme coefficients regardless of the resolution of the dataset or types of kernel function: (1) GWR tends to generate extreme coefficients for less spatially dense datasets; (2) coefficient maps based on polygon data representing aggregated areal units are more sensitive to extreme coefficients; and (3) coefficient maps using bandwidths generated by a fixed calibration procedure are more vulnerable to the extreme coefficients than adaptive calibration.  相似文献   

11.
Soil organic matter (SOM) is an important component of soils, and knowing the spatial distribution and variation of SOM is the premise for sustainably utilizing soils. The objective of this study was to compare geographically weighted regression (GWR) with regression kriging (RK) for estimating the spatial distribution of SOM using field-sample data in SOM and auxiliary data in correlated environmental variables (e.g., elevation, slope, ferrous minerals index, and Normalized Difference Vegetation Index). Results showed that GWR was a relatively better method and could provide promising results for SOM prediction in comparison with RK. The map interpolated by GWR showed similar spatial patterns influenced by environmental variables and the nonapparent effect of data outliers, but with higher accuracies, compared to that interpolated by RK.  相似文献   

12.
Local regression methods such as geographically weighted regression (GWR) can provide specific information about individual locations (or places) in spatial analysis that is useful for mapping nonstationary covariate relationships. However, the distance-based weighting schemes used in GWR are only adaptable for spatial objects that are point or area features. In particular, spatial object-pairs pose a challenge for local analysis because they have a linear dimensionality rather than a point dimensionality. This paper proposes using an alternative local regression model – quantile regression (QR) – for investigating the stationarity of regression parameters with respect to these linear features as well as facilitating the visualization of the results. An empirical example of a gravity model analysis of trade patterns within Europe is used to illustrate the utility of the proposed method.  相似文献   

13.
在城镇化进程快速推进耕地保护形势严峻的背景下,粮食单产的区域差异研究对地区粮食安全具有重要意义。本文以湖北省粮食单产数据为基础,采用探索性数据分析方法和地理加权回归模型揭示省内县域粮食单产的空间关系和影响因素的空间异质性。结果表明:湖北省县域粮食单产具有显著的空间自相关特征,整体水平稳中有增。农村劳动力、化肥施用量、农村机械总动力和有效灌溉面积比对粮食单产具有正向促进作用和一定的空间分异规律,对农村用电量呈现出先正后负的影响,各因素的空间异质性显著。结合县域现状和因素的区域特质采取对应的有效措施应对粮食安全问题具有深远的现实意义。  相似文献   

14.
针对离群值存在时地理加权回归模型拟合效果较差的问题,本文提出了基于IGGⅢ的地理加权回归方法。核心是采用IGGⅢ方案中的权函数计算权重矩阵,将权因子用于地理加权回归参数估计模型。利用模拟数据和真实数据与GWR、ACV-GWR进行对比试验,以MSE、MAE和R2作为指标对结果进行评价。模拟试验结果显示,IGGⅢ-GWR比GWR性能分别提升了51.14%、23.77%、28.4%,比ACV-GWR分别提升了49.96%、22.57%、27.1%;真实试验结果显示,IGGⅢ-GWR比GWR性能分别提升了12.65%、7.44%、0.37%,比ACV-GWR分别提升了11.85%、6.96%、0.34%。试验结果表明,基于IGGⅢ的地理加权回归可提高模型的抗差能力,拟合效果更好。  相似文献   

15.
Urban heat island (UHI) effect is among the most typical characteristics of urban climate. The analysis of surface UHI (SUHI) mechanisms has received the most extensive attention in the world. Here, we quantify the diurnal and seasonal SUHI intensity (SUHII) in global 419 major cities during the period 2003-2013. A geographically weighted regression (GWR) was established to assess the relationships between SUHII and several driving factors, and it further was compared to the ordinary least square (OLS) and stepwise multiple linear regression (SMLR) models. We show that GWR model has higher determination coefficient (R2) than OLS and SMLR models (Time: summer daytime, summer night, winter daytime and winter nighttime; GWR: 0.805, 0.458, 0.699 and 0.582; OLS: 0.732, 0.347, 0.473 and 0.320; SMLR: 0.732, 0.341, 0.468 and 0.316), indicating the spatially non-stationarity in the relationships. During the day, both vegetation activity and tree cover fraction have stronger cooling effect on SUHI in the summer of Asia. At night, there are stronger albedo effects on SUHI in the summer of Eastern Asia and Western North America and in the winter of Eastern Asia. Furthermore, temperature has stronger effect on daytime SUHI in Africa, Europe and South America in summer, and precipitation has stronger effect on nighttime SUHI in Africa and Europe in summer. Our results emphasize the spatial variation of the relationships between SUHII and relevant driving factors across global major cities, further indicating that the spatially non-stationary effect of driving factors on SUHII need to be considered in the future.  相似文献   

16.
This paper describes the results of a geo-statistical analysis carried out at the provincial level in Southern Europe to model wildfire occurrence from socio-economic and demographic indicators together with land cover and agricultural statistics. We applied a classical ordinary least squares (OLS) linear regression together with a geographically weighted regression (GWR) to explain long-term wild-fire occurrence patterns (mean annual density of >1 ha fires). The explanatory power of the OLS model increased from 52% to 78% as a result of the non-constant relationships between fire occurrence and the underlying explanatory variables throughout the Mediterranean Basin. The global model we developed (i.e., OLS regression) was not sufficient to fully describe the underlying causal factors in wildfire occurrence modeling. Indeed, local approaches (i.e., GWR) can complement the global model in overcoming the problem of non-stationarity or missing variables. Our results confirm the importance of agrarian activities, land abandonment, and development processes as underlying factors of fire occurrence. The identification of regions with spatially varying relationships can contribute to the better understanding of the fire problem, especially over large geographic areas, while at the same time recognizing its local character. This can be very important for fire management and policy.  相似文献   

17.
地理加权回归是常用的空间分析方法,已广泛应用于各个领域,但利用此方法进行回归分析前,往往忽略了对设计矩阵进行局部多重共线性的诊断,从而导致对模型的估计不准确。因此,本文在引入了全局模型的多重共线性诊断方法的基础上,对这些方法进行了改进,改进后构建了加权方差膨胀因子法和加权条件指标方法——分解比法,用于诊断地理加权回归模型设计矩阵的多重共线性问题。实验结果表明,多重共线性不存在于全局模型,而可能存在于局部模型中,构建的两种方法能够有效地诊断地理加权回归模型的多重共线性问题,且加权条件指标方法——分解比法比加权方差膨胀因子法在诊断多重共线性问题上更有优势。  相似文献   

18.
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.   相似文献   

19.
After 110 years of sustained fire suppression, the 2000 Jasper fire consumed about 33,785 ha (83,500 acres), or 12% of the Black Hills National Forest. We mapped the severity of the Jasper fire using Landsat imagery and then investigated post-fire vegetation regeneration conditions using field data, Quickbird imagery, and regression modeling. We found that fire scar and severity could be delineated and mapped accurately based on remotely sensed and field-acquired data. Results also revealed that vegetative recovery relative to burn severity, topography, and soil factors could be modeled effectively using local geographically weighted regression (GWR). Further regeneration assessment revealed that severely or heavily burned areas were more rapidly re-vegetated with grasses, forbs, and woody shrubs in the short term. The field survey showed that prescribed burns retard crown fires and that after eight years ponderosa pine seedlings have not re-established.  相似文献   

20.
针对传统地理加权回归(GWR)在大数据量计算中存在的计算效率低、内存占用大、数据规模受限等问题,本文提出了快速并行地理加权回归(FPGWR)算法,基于英伟达CUDA架构实现了GWR的并行加速,将串行过程分解为并行的独立回归计算模块,同时优化了内存使用模型,提高了算法的运行速度。对比FPGWR和传统GWR在不同数量级模拟数据上和真实数据上的运行速度,结果显示,FPGWR能够支持更大规模的样本量计算并有效提升运行效率,数据量越大加速效果越显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号