首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to learn more about the nature of the dynamic processes taking place in the West Bohemia/Vogtland earthquake swarm region, we investigated the temporal and spatial variations of the source mechanisms of the January 1997 swarm beneath Nový Kostel (NKC). Visual analyses of WEBNET seismograms of over 800 events revealed that a specific feature of this swarm was the occurrence of eight classes of multiplet events. The result of single-source, absolute moment tensor inversion of the P and SH peak amplitudes of a subset of 70 events representing all multiplet classes indicated that eight statistically significant types of mechanisms occurred during the swarm. Two of them, types A and B in our denotation, comprised all M L 1.3 events and predominated in the swarm. Type A were pure strike-slip mechanisms or strike-slip mechanisms containing a small normal component, with a nearly pure double-couple source. For class B events, oblique-thrust faulting and non-double-couple components significant at a fairly high confidence level were typical. Type A events predominated in the southern subcluster of the swarm, whereas most of type B events occurred in the subcluster northwards from NKC. This indicates that two major seismogenic planes were active during the swarm. The swarm essentially developed in four phases: in the first, type A events prevailed and the southern plane was active; during the second, characterised by the occurrence of both type A and B events (the former in the southern, the latter predominantly in the northern subcluster), the activity of the swarm culminated; in the third and fourth, the occurrence of type B events in the northern plane predominated, and only weak single events occurred southwards from NKC. Mechanisms of types AB , C , D , E , F and G , which were typical for M L 1.2 events, occurred randomly throughout the swarm. Type AB events were identified in both the southern and northern clusters, type C , E , F and G mechanisms only southwards from NKC. Type D events exhibited a large scatter of hypocentres which fell in neither the southern nor the northern cluster. Focal mechanisms like those reported in this study and with analogous temporal and spatial variations were observed by other authors already fifteen years ago in the 1985/86 earthquake swarm and may, therefore, be typical for the region under study.  相似文献   

2.
Abstract

Abstract Base flows make up the flows of most rivers in Zimbabwe during the dry season. Prediction of base flows from basin characteristics is necessary for water resources planning of ungauged basins. Linear regression and artificial neural networks were used to predict the base flow index (BFI) from basin characteristics for 52 basins in Zimbabwe. Base flow index was positively related to mean annual precipitation (r = 0.71), basin slope (r = 0.76), and drainage density (r = 0.29), and negatively related to mean annual evapotranspiration (r = –0.74), and proportion of a basin with grasslands and wooded grasslands (r = –0.53). Differences in lithology did not significantly affect BFI. Linear regression and artificial neural networks were both suitable for predicting BFI values. The predicted BFI was used in turn to derive flow duration curves of the 52 basins and with R 2 being 0.89–0.99.  相似文献   

3.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

4.
The dispersion of inertial particles continuously emitted from a point source is analytically investigated in the limit of small but finite inertia. Our focus is on the evolution equation of the particle joint probability density function p(x,?v,?t), x and v being the particle position and velocity, respectively. For arbitrary inertia, position and velocity variables are coupled, with the result that p(x,?v,?t) can be determined by solving a partial differential equation in a 2d-dimensional space, d being the physical-space dimensionality. For small (but nevertheless finite) inertia, (x,?v)-variables decouple and the determination of p(x,?v,?t) is reduced to solve a system of two standard forced advection–diffusion equations in the space variables x. The latter equations are derived here from first principles, i.e., from the well-known Lagrangian evolution equations for position and particle velocity.  相似文献   

5.
6.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

7.
Abstract

‘‘Helicity'’ density Hu · ω and other pseudo-scalar fields such as P ≡ ω · Vlnρ (which is related to Ertel potential vorticity) are useful quantities in theoretical fluid dynamics and magneto-fluid dynamics. Here u denotes the Eulerian flow velocity relative to the chosen frame of reference, ω ≡ V × u is the corresponding relative vorticity and ρ the mass density of the fluid. A general expression is readily obtained for ?H/?t (where t denotes time) in terms of P and the ‘‘superhelicity'’ density S ≡ ω · V × ω which, in fluids of low viscosity, has its highest values in boundary layers. One need for such a relationship became evident during an attempt to interpret the findings of laboratory experiments on thermal convection in rotating fluids in containers of various geometrical shapes and topological characteristics.

In electrodynamics an analogous expression can be found relating the time rate of change of ‘‘magnetic helicity'’ A · B to ‘‘magnetic superhelicity'’ B · ? × B (where B · ? × A is the magnetic field) and a scalar quantity analogous to P which involves non-Ohmic contributions to the relationship between the electric current density and the electric field.  相似文献   

8.
Abstract

The Hilhorst model was used to convert bulk electrical conductivity (σb) to pore water electrical conductivity (σp) under laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and σb. In the present study, applying the linear relationship εbσb to data obtained from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that regression. We were able to derive an accurate offset of the relationship εb–σb and to estimate the evolution of σp over time by including a stochastic component to the linear model, rearranging it to a time-varying dynamic linear model (DLM), and using Kalman filtering and smoothing. The offset proved to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature along the soil profile.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

9.
Abstract

Soil water content (θ) and saturated hydraulic conductivity (Ks) vary in space. The objective of this study was to examine the effects of initial soil water content (θi) and Ks variability on runoff simulations using the LImburg Soil Erosion Model (LISEM) in a small watershed in the Chinese Loess Plateau, based on model parameters derived from intensive measurements. The results showed that the total discharge (TD) and peak discharge (PD) were underestimated when the variability of θi and Ks was partially considered or completely ignored compared with those when the variability was fully considered. Time to peak (TP) was less affected by the spatial variability compared to TD and PD. Except for TP in some cases, significant differences were found in all hydrological variables (TD, PD and TP) between the cases in which spatial variability of θi or Ks was fully considered and those in which spatial variability was partially considered or completely ignored. Furthermore, runoff simulations were affected more strongly by Ks variability than by θi variability. The degree of spatial variability influences on runoff simulations was related to the rainfall pattern and θi. Greater rainfall depth and instantaneous rainfall intensity corresponded to a smaller influence of the spatial variability. Stronger effects of the θi variability on runoff simulation were found in wetter soils, while stronger effects of the Ks variability were found in drier soils. For accurate runoff simulation, the θi variability can be completely ignored in cases of a 1-h duration storm with a return period greater than 10 years, while Ks variability should be fully considered even in the case of a 1-h duration storm with a return period of 20 years.
Editor D. Koutsoyiannis; Associate editor A. Fiori  相似文献   

10.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   

11.
Abstract

The effective porosity θ e for partially penetrated aquifers was determined. The model basin sandy aquifer available in the Centre was used. The values obtained for θ e were in good agreement with the adopted values.  相似文献   

12.
Abstract

The water cloud model is used to account for the effect of vegetation water content on radar backscatter data. The model generally comprises two parameters that characterize the vegetated terrain, A and B, and two bare soil parameters, C and D. In the present study, parameters A and B were estimated using a genetic algorithm (GA) optimization technique and compared with estimates obtained by the sequential unconstrained minimization technique (SUMT) from measured backscatter data. The parameter estimation was formulated as a least squares optimization problem by minimizing the deviations between the backscatter coefficients retrieved from the ENVISAT ASAR image and those predicted by the water cloud model. The bias induced by three different objective functions was statistically analysed by generating synthetic backscatter data. It was observed that, when the backscatter coefficient data contain no errors, the objective functions do not induce any bias in the parameter estimation and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the cases considered, the objective function based on the sum of squares of normalized deviations with respect to the computed backscatter coefficient resulted in the best possible estimates. A comparison of the GA technique with the SUMT was undertaken in estimating the water cloud model parameters. For the case considered, the GA technique performed better than the SUMT in parameter estimation, where the root mean squared error obtained from the GA was about half of that obtained by the SUMT.

Editor D. Koutsoyiannis; Associate editor L. See

Citation Kumar, K., Hari Prasad, K.S. and Arora, M.K., 2012. Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrological Sciences Journal, 57 (4), 776–789.  相似文献   

13.
Abstract

The aim of this study was to evaluate canopy water storage (CWS) of the co-dominant shrubs in the revegetation of sand dunes in northwest China. Our results indicated that CWS differed among the xerophyte taxa studied. The average CWS increased exponentially with decreased raindrop size. The time course of CWS in terms of leaf area indicated that Artemisia ordosica attains its peak value of 0.48 mm within 170 min. The corresponding values for Caragana korshinskii and Hedysarum scoparium were 0.38 mm and 178 min, and 0.32 mm and 161 min, respectively, implying that A. ordosica had a higher CWS than C. korshinskii and H. scoparium. Dry biomass was a desirable predictor for estimation of CWS for C. korshinskii and H. scoparium, and shrub volume for A. ordosica. Our results show that the dependence of CWS on raindrop size varied in accordance with the shrub canopy structure.
Editor Z.W. Kundzewicz  相似文献   

14.
Earthquakes result from continuous geodynamic processes. A topic of significant interest for the scientific community is to elaborate on the phenomena governing the faulting and fracturing of crustal rocks. Therefore, in this study, uniaxial compressive shear failure experiments were conducted on Fangshan marble rock samples with a prefabricated slot to simulate thrust faulting. The center of each marble plate (105 mm × 80 mm × 5 mm) was engraved with a 30-mm long double-sided nonpenetrating slot (depth: 2 mm, width: 0.5 mm). The deformation and destruction processes of the rock surface were recorded using a high-speed camera. The digital image correlation method was used to calculate the displacement and strain distribution and variation at different loading stages. The accumulative and incremental displacement fields u and v , strain field ex and ey, and shear strain exy were analyzed. When the loading level reached its ultimate value, the strain field was concentrated around the prefabricated slot. The concentration reached a maximum at the ends of the prefabricated slot. The magnitude of shear strain reached 0.1. This experiment contributes to our understanding of the dynamic process of active faulting.  相似文献   

15.
The turbulent cross helicity is directly related to the coupling coefficients for the mean vorticity in the electromotive force and for the mean magnetic-field strain in the Reynolds stress tensor. This suggests that the cross-helicity effects are important in the cases where global inhomogeneous flow and magnetic-field structures are present. Since such large-scale structures are ubiquitous in geo/astrophysical phenomena, the cross-helicity effect is expected to play an important role in geo/astrophysical flows. In the presence of turbulent cross helicity, the mean vortical motion contributes to the turbulent electromotive force. Magnetic-field generation due to this effect is called the cross-helicity dynamo. Several features of the cross-helicity dynamo are introduced. Alignment of the mean electric-current density J with the mean vorticity Ω , as well as the alignment between the mean magnetic field B and velocity U , is supposed to be one of the characteristic features of the dynamo. Unlike the case in the helicity or α effect, where J is aligned with B in the turbulent electromotive force, we in general have a finite mean-field Lorentz force J ?×? B in the cross-helicity dynamo. This gives a distinguished feature of the cross-helicity effect. By considering the effects of cross helicity in the momentum equation, we see several interesting consequences of the effect. Turbulent cross helicity coupled with the mean magnetic shear reduces the effect of turbulent or eddy viscosity. Flow induction is an important consequence of this effect. One key issue in the cross-helicity dynamo is to examine how and how much cross helicity can be present in turbulence. On the basis of the cross-helicity transport equation, its production mechanisms are discussed. Some recent developments in numerical validation of the basic notion of the cross-helicity dynamo are also presented.  相似文献   

16.
ABSTRACT

Trees concentrate rainfall to near-stem soils via stemflow. When canopy structures are organized appropriately, stemflow can even induce preferential flow through soils, transporting nutrients to biogeochemically active areas. Bark structure significantly affects stemflow, yet bark-stemflow studies are primarily qualitative. We used a LaserBark to compute bark microrelief (MR), ridge-to-furrow amplitude (R) and slope (S) metrics per American Society of Mechanical Engineering standards (ASME-B46.1–2009) for two morphologically contrasting species (Fagus sylvatica L. (European beech), Quercus robur L. (pendunculate oak)) under storm conditions with strong bark water storage capacity (BWSC) influence in central Germany. Smaller R and S for F. sylvatica significantly lowered BWSC, which strongly and inversely correlated to maximum funnelling ratios and permitted stemflow generation at lower rain magnitudes. Larger R and S values in Q. robur reduced funnelling, diminishing stemflow drainage for larger storms. Quercus robur funnelling and stemflow was more reliant on intermediate rain intensities and intermittency to maintain bark channel-dependent drainage pathways. Shelter provided by Q. robur’s ridged bark also appears to protect entrained water, lengthening mean intrastorm dry periods necessary to affect stemflow. Storm conditions where BWSC plays a major role in stemflow accounted for much of 2013’s rainfall at the nearest meteorological station (Wulferstedt).
Editor M.C. Acreman; Associate editor not assigned  相似文献   

17.
18.
ABSTRACT

This study examined the effects of herbaceous plant roots on interrill erosion using two herbaceous species: clover (Trifolium repens) and oats (Avena sativa). We developed a simple rainfall simulator with relatively high normalized kinetic energy (KE; 23.2 J m?2 mm?1). Under simulated rainfall, we measured eroded soil for 42 boxes with various amounts of aboveground and belowground biomass. Aboveground vegetation had a significant effect on the soil erosion rate (SER). We found a clear negative relationship between the percent vegetation cover (c) and the SER. In contrast, plant roots showed no effects on the SER. The SER was not significantly different between the boxes with and without plant roots under similar c conditions. Thus, plant roots could have less of an effect on the SER under higher KE conditions.
Editor M.C. Acreman Associate editor N. Verhoest  相似文献   

19.
Abstract

A new approach was developed for estimating vertical soil water fluxes using soil water content time series data. Instead of a traditional fixed time interval, this approach utilizes the time interval between two sequential minima of the soil water storage time series to identify groundwater recharge events and calculate components of the soil water budget. We calculated water budget components: surface-water excess (Sw), infiltration less evapotranspiration (I – ET) and groundwater recharge (R) from May 2001 to January 2003 at eight locations at the USDA Agricultural Research Center, Beltsville, Maryland, USA. High uncertainty was observed for all budget components. This uncertainty was attributed to spatial and temporal variation in Sw, I – ET and R, and was caused by nonuniform rainfall distributions during recharge events, variability in the profile water content, and spatial variability in soil hydraulic properties. The proposed event-based approach allows estimating water budget components when profile water content monitoring data are available.

Citation Guber, A., Gish, T., Pachepsky, Y., McKee, L., Nicholson, T. & Cady, R. (2011) Event-based estimation of water budget components using a network of multi-sensor capacitance probes. Hydrol. Sci. J. 56(7), 1227–1241.  相似文献   

20.
利用2019年度大华北秋季复测156个测点的流动地磁矢量资料,获得河北及周边地区岩石圈磁场半年变化图,分析归纳河北及周边地区岩石圈磁场的总体变化特征,并研究测区内2019年12月3日河北怀安MS3.4地震和2019年12月5日河北丰南MS4.5地震前岩石圈磁场局部变化和异常特征。结果表明:丰南MS4.5地震发生在H矢量的转向区,总强度F负异常的高值区,D要素负异常的高梯度带和Z值变化的高值区;怀安MS3.4地震则发生在H矢量幅值弱化且转向区,D要素零值线附近的正值区和Z值变化的低值区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号