首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文对第22周以来产生M级以上(包括M级)的X射线耀斑的太阳黑子活动区进行了统计分析,得到如下结果:(1)黑子活动区在南北半球上分布是不均匀的。具体表现是:南半球出现的黑子活动区多于北半球出现的。南半球活动较强的黑子群主要集中在80°,160°,200°和340°经度附近;北半球活动较强的黑子群主要集中在240°-280°和340°-360°经度带。(2)黑子群的面积(S_p)越大越易产生X级的X射线耀斑。对黑子群面积S_p在大于1000,500-1000和小于500单位时,它们产生X级的X射线耀斑的比率分别约为41%,33%和9%。  相似文献   

2.
文中评价了23 周以来北京天文台的短期太阳活动预报工作,X 射线耀斑的报准率为89 .6 % ,太阳质子事件的报准率为62 .5 % 。另外,还叙述了第23 周峰年北京天文台太阳活动预报工作的选题( 包括研究课题和实施课题  相似文献   

3.
一、予报和实际检验 1978年1月——12月云南天文台的黑子目视观测327天,记录了475个黑子群。其中F、E、D、C型黑子群通常都进行黑子精细结构照相。H_α色球耀斑巡视观测317天,黑子磁场极大值测量292天。全年中,作者利用黑子群内出现长命旋涡作为质子予报的最初的主要指标。当黑子群发展成为β_γ,β_δ、γ、γ_δ等复杂磁场形态时,即作出质  相似文献   

4.
本文研究结果表明:同一黑子群在日面期间的顺或反时针方向的旋转运动会先后并存.质子耀斑前1~2无,黑子群的旋转角速度达到极大.耀斑后,磁绳的松弛,黑子群可能会反向旋转,强的剪切过程和质子耀斑可能会再度出现.强质子耀斑活动区的共同特征是:(1)形态为单个团状结构δ型黑子,即众多异极性本影核紧锁在同一黑子半影中;(2)黑子面积>1000×10-6半球面积,日面跨度>10°;(3)黑子群都有快速的旋转运动.这类活动区,如果在日面西部活动性明显地增强,那么这个活动区在未来转到日面边缘及其背后、或再次从日面东边缘转出时,定能再次爆发耀斑和伴随较强质子事件。  相似文献   

5.
本研究结果表明,同一黑子群在日面期间的顺或反时针方向的旋转运动会先后并存。质子耀斑前1~2天,黑子群的旋转角速度达到极大,耀斑后,磁绳的松弛,黑子群可能会反向转转,强的剪切过程和质子耀斑可能会再度出现,强质子耀斑活动区的共同特征是:(1)形态为单个团状结构δ型黑子,即众多异极性本影核紧锁在同一黑子半影中,(2)黑子面积〉1000×10^-6半球面积,日面跨度〉10°;(3)黑子群有快速的旋转活动  相似文献   

6.
紫台观测编号为1988年第115号黑子群(Boulder编号为5060)是1988年6月26日由日面东边缘转出来,于7月9日转到日面西边缘背后,在7月18日过日面中心经圈,历时共13天。这个黑子群的日面坐标是S20和L5。 该黑子群比较大而复杂。在它通过日面期间,最大时的较正面积达2834(以半球面积的百万分之一为单位),这是从第20周至88年以来所观测到的面积最大的黑子群。此黑子群的型别(按麦氏分类)属最复杂的类型,基本上一直保持为FKC型。在6月26日从日面东边缘转出来时,黑子群呈现为一种异常排列,即其前导黑子位于高纬度,后随黑子处于低纬度,而且呈现明显的旋转运动,其转动方向是反时针的。它在过日面期间还不断的有自身的分裂和移动等特性。另外,该黑子群的磁性结构也异常复杂,在经过日面期间始终为δ结构。基于以上这些形态特征,促使这黑子群在通过日面这段时间内,先后产生了一系列的耀斑活动(其中有44个C级和13个M级的X射线耀斑),并大都伴随着显著的射电爆发,而且引起了多次相应的电离层突然骚动(SID)(有60个耀斑伴随着相应的电离层突然骚扰)。  相似文献   

7.
在国际太阳活动峰年期间,云南天文台观测到80—575号活动区,日面坐标S12L97,过中经日期11月11.7日,从11月5日到17日连续观测13天。 该活动区在日面通过期间,频繁地爆发耀斑,其中有一部分耀斑有强烈的x-线和短波突然中断事件相伴生。11月6日0542UT.,发生的一个X9/3B级耀斑伴生的X级x-线事件,强烈程度仅次于1978年7月11日的那次。 该活动区的形态特征之一是它的黑子群为第21太阳活动周以来面积最大的一群。它是云台80—529老活动的回归黑子群,许多新黑子在老黑子的周围浮现,从而变成一个非常复杂的FKC型黑子群,面积大,磁场梯度大,具有δ-结构。全群的平均磁场强度约为2000高斯,在几个主黑子中测量到最大磁场为3300高斯。 这个复杂的黑子群中,观测到了强烈的运动、旋转,分离,合并和黑子间的相互作用。老黑子中发现一个反常光桥,它是在两个本影合并起来时形成,而不象通常在黑子将分裂时出现。  相似文献   

8.
以22周太阳活动低年(1993-1995)质子事件及其对应活动区的综合分析结果为判据,预报23周太阳活动上升阶段的质子事件。从1997年11月开始到1998年12月,用该方法预报的质子事件共6个,报准3个,不确定一个,虚报1个,漏报1个(太阳背面产生的事件)。本对用该方法预报的结果进行了分析讨论,并与世界警报中心的预报结果进行了比对,结果表明,该方法对于质子事件的短期预报是有效的。  相似文献   

9.
本文研究了22周中的9个强质子耀斑活动区的共同特征,研究结果表明:单个团状结构黑子,即众多异极性黑子本影核紧锁在同一半影结构中的δ型黑子是强质子耀斑活动区的典型形态特征。黑子群的旋转是质子耀斑活动区的又一重要特征,黑子群的旋转方向与日面南、北半球无关。强质子耀斑的爆发总是在黑子群旋转角度达到正或负相极大之后出现。质子耀斑后,磁绳的松弛,黑子群可能会出现反向旋转,强的剪切过程和质子耀斑可能会再度出现。  相似文献   

10.
以22周太阳活动低年(1993-1995)质子事件及其对应活动区的综合分析结果为判据,预报23周太阳活动上升阶段的质子事件.从1997年11月开始到1998年12月,用该方法预报的质子事件共6个,报准3个,不确定一个,虚报1个,漏报1个(太阳背面产生的事件).本文对用该方法预报的结果进行了分析讨论,并与世界警报中心的预报结果进行了比对,结果表明,该方法对于质子事件的短期预报是有效的.  相似文献   

11.
The solar system's position in the Galaxy is an exclusive one, since the Sun is close to the corotation circle, which is the place where the angular velocity of the galactic differential rotation is equal to that of density waves displaying as spiral arms. Each galaxy contains only one corotation circle; therefore, it is an exceptional place. In the Galaxy, the deviation of the Sun from the corotation is very small — it is equal to ΔR/R ≈0.03, where ΔR=R c ?R ,R c is the corotation distance from the galactic center andR is the Sun's distance from the galactic center. The special conditions of the Sun's position in the Galaxy explain the origin of the fundamental cosmogony timescalesT 1≈4.6×109 yr,T 2?108 yr,T 3?106 yr detected by the radioactive decay of various nuclides. The timescaleT 1 (the solar system's ‘lifetime’) is the protosolar cloud lifetime in a space between the galactic spiral arms. The timescaleT 2 is the presolar cloud lifetime in a spiral arm.T 3 is a timescale of hydrodynamical processes of a cloud-wave interaction. The possibility of the natural explanation of the cosmogony timescales by the unified process (on condition that the Sun is near the state of corotation) can become an argument in favour of the fact that the nearness to the corotation is necessary for the formation of systems similar to the Solar system. If the special position of the Sun is not incidental, then the corotation circles of our Galaxy, as well as those of other galaxies, are just regions where situations similar to ours are likely to be found.  相似文献   

12.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

13.
It is suggested that the overall early melting of the lunar surface is not necessary for the explanation of facts and that the structure of highlands is more complicated than a solidified anorthositic ‘plot’. The early heating of the interior of the Moon up to 1000K is really needed for the subsequent thermal history with the maximum melting 3.5 × 109 yr ago, to give the observed ages for mare basalts. This may be considered as an indication that the Moon during the accumulation retained a portion of its gravitational energy converted into heat, which may occur only at rapid processes. A rapid (t < 103 yr) accretion of the Moon from the circumterrestrial swarm of small particles would give necessary temperature, but it is not compatible with the characteristic time 108 yr of the replenishment of this swarm which is the same as the time-scale of the accumulation of the Earth. It is shown that there were conditions in the circumterrestial swarm for the formation at a first stage of a few large protomoons. Their number and position is evaluated from the simple formal laws of the growth of satellites in the vicinity of a planet. Such ‘systems’ of protomoons are compared with the observed multiple systems, and the conclusion is reached that there could have been not more than 2–3 large protomoons with the Earth. The tidal evolution of protomoon orbits was short not only for the present value of the tidal phase-lag but also for a considerably smaller value. The coalescence of protomoons into a single Moon had to occur before the formation of the observed relief on the Moon. If we accept the age 3.9 × 109 yr for the excavation of the Imbrium basin and ascribe the latter to the impact of an Earth satellite, this collision had to be roughly at 30R, whereR is the radius of the Earth, because the Moon at that time had to be somewhere at this distance. Therefore, the protomoons had to be orbiting inside 20–25R, and their coalescence had to occur more than 4.0x109 yr ago. The energy release at coalescence is equivalent to several hundred degrees and even 1000 K. The process is very rapid (of the order of one hour). Therefore, the model is valid for the initial conditions of the Moon.  相似文献   

14.
Rozelot  J.P.  Godier  S.  Lefebvre  S. 《Solar physics》2001,198(2):223-240
In this paper we first emphasize why it is important to know the successive zonal harmonics of the Sun's figure with high accuracy: mainly fundamental astrometry, helioseismology, planetary motions and relativistic effects. Then we briefly comment why the Sun appears oblate, going back to primitive definitions in order to underline some discrepancies in theories and to emphasize again the relevant hypotheses. We propose a new theoretical approach entirely based on an expansion in terms of Legendre's functions, including the differential rotation of the Sun at the surface. This permits linking the two first spherical harmonic coefficients (J 2 and J 4) with the geometric parameters that can be measured on the Sun (equatorial and polar radii). We emphasize the difficulties in inferring gravitational oblateness from visual measurements of the geometric oblateness, and more generally a dynamical flattening. Results are given for different observed rotational laws. It is shown that the surface oblateness is surely upper bounded by 11 milliarcsecond. As a consequence of the observed surface and sub-surface differential rotation laws, we deduce a measure of the two first gravitational harmonics, the quadrupole and the octopole moment of the Sun: J 2=−(6.13±2.52)×10−7 if all observed data are taken into account, and respectively, J 2=−(6.84±3.75)×10−7 if only sunspot data are considered, and J 2=−(3.49±1.86)×10−7 in the case of helioseismic data alone. The value deduced from all available data for the octopole is: J 4=(2.8±2.1)×10−12. These values are compared to some others found in the literature. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005238718479  相似文献   

15.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

16.
17.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号