首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A large amount of buildings was damaged or destroyed by the 2011 Great East Japan tsunami. Numerous field surveys were conducted in order to collect the tsunami inundation extents and building damage data in the affected areas. Therefore, this event provides us with one of the most complete data set among tsunami events in history. In this study, fragility functions are derived using data provided by the Ministry of Land, Infrastructure and Transportation of Japan, with more than 250,000 structures surveyed. The set of data has details on damage level, structural material, number of stories per building and location (town). This information is crucial to the understanding of the causes of building damage, as differences in structural characteristics and building location can be taken into account in the damage probability analysis. Using least squares regression, different sets of fragility curves are derived to demonstrate the influence of structural material, number of stories and coastal topography on building damage levels. The results show a better resistant performance of reinforced concrete and steel buildings over wood or masonry buildings. Also, buildings taller than two stories were confirmed to be much stronger than the buildings of one or two stories. The damage characteristic due to the coastal topography based on limited number of data in town locations is also shortly discussed here. At the same tsunami inundation depth, buildings along the Sanriku ria coast were much greater damaged than buildings from the plain coast in Sendai. The difference in damage states can be explained by the faster flow velocities in the ria coast at the same inundation depth. These findings are key to support better future building damage assessments, land use management and disaster planning.  相似文献   

2.
Tsunamis are destructive natural phenomena which cause extensive damage to the built environment, affecting the livelihoods and economy of the impacted nations. This has been demonstrated by the tragic events of the Indian Ocean tsunami in 2004, or the Great East Japan tsunami in 2011. Following such events, a few studies have attempted to assess the fragility of the existing building inventory by constructing empirical stochastic functions, which relate the damage to a measure of tsunami intensity. However, these studies typically fit a linear statistical model to the available damage data, which are aggregated in bins of similar levels of tsunami intensity. This procedure, however, cannot deal well with aggregated data, low and high damage probabilities, nor does it result in the most realistic representation of the tsunami-induced damage. Deviating from this trend, the present study adopts the more realistic generalised linear models which address the aforementioned disadvantages. The proposed models are fitted to the damage database, containing 178,448 buildings surveyed in the aftermath of the 2011 Japanese tsunami, provided by the Ministry of Land, Infrastructure Transport and Tourism in Japan. In line with the results obtained in previous studies, the fragility curves show that wooden buildings (the dominant construction type in Japan) are the least resistant against tsunami loading. The diagnostics show that taking into account both the building’s construction type and the tsunami flow depth is crucial to the quality of the damage estimation and that these two variables do not act independently. In addition, the diagnostics reveal that tsunami flow depth estimates low levels of damage reasonably well; however, it is not the most representative measure of intensity of the tsunami for high damage states (especially structural damage). Further research using disaggregated damage data and additional explanatory variables is required in order to obtain reliable model estimations of building damage probability.  相似文献   

3.
Community-scale estimates of building damage and economic loss are modeled for Seaside, Oregon, for Cascadia subduction zone events ranging from 8.7 to 9.3 MW with corresponding slip distances of 3–25 m considering only the effects of the tsunami. Numerical simulations are obtained from the National Oceanic and Atmospheric Administration’s method of splitting tsunami model which includes a source model, subsidence, and calculations of the propagation and inundation flow characteristics. The damage estimates are based on fragility curves from the literature which relate flow depth with probability of damage for two different structural materials of buildings. Calculations are performed at the parcel level for the inundation hazard without including damage caused by the earthquake itself. Calculations show that the severity of building damage in Seaside is sensitive to the magnitude of the event or degree of slip because the majority of the city is located on low-lying coastal land within the estimated inundation zone. For the events modeled, the percentage of building within the inundation zone ranges from 9 to 88 %, with average direct economic losses ranging from $2 million to $1.2 billion.  相似文献   

4.
Sugimoto  T.  Murakami  H.  Kozuki  Y.  Nishikawa  K.  Shimada  T. 《Natural Hazards》2003,29(3):587-602
This study presents a tsunami human damage prediction method employing numerical calculation and GIS (Geographical Information System) for Usa town, Tosa City, Shikoku Island, Japan. Sometime near the end of the first half of the twenty-first century, a huge earthquake is predicted to occur along the Nankai trough and costal areas facing the Pacific ocean of Shikoku Island. Much damage due to the resultant tsunamis will be caused, therefore, it is necessary to predict the extent of human damage for every town in high-risk areas.The number of tsunami victims was estimated by population in areas of maximum inundation. The number of deaths as a result of tsunami was estimated by a method which employed accumulated death toll of every area in terms of time and space, taking into account consideration of time necessary to begin to seek refuge after an earthquake, tsunami inundation depth on land, flow velocity and evacuation speed. As a result of this study a rapid decrease in death toll by early evacuation was shown quantitatively for the first time.Thus, with the method presented here, it is possible to estimate the extent of tsunami human damage on coastal regions, and may be useful as a tsunami human damage countermeasure.  相似文献   

5.
Deterministic analysis of local tsunami generated by subduction zone earthquakes demonstrates the potential for extensive inundation and building damage in Napier, New Zealand. We present the first high-resolution assessments of tsunami inundation in Napier based on full simulation from tsunami generation to inundation and demonstrate the potential variability of onshore impacts due to local earthquakes. In the most extreme scenario, rupture of the whole Hikurangi subduction margin, maximum onshore flow depth exceeds 8.0 m within 200 m of the shore and exceeds 5.0 m in the city centre, with high potential for major damage to buildings. Inundation due to single-segment or splay fault rupture is relatively limited despite the magnitudes of MW 7.8 and greater. There is approximately 30 min available for evacuation of the inundation zone following a local rupture, and inundation could reach a maximum extent of 4 km. The central city is inundated by up to three waves, and Napier Port could be inundated repeatedly for 12 h. These new data on potential flow depth, arrival time and flow kinematics provide valuable information for tsunami education, exposure analysis and evacuation planning.  相似文献   

6.
Tsunami-induced scour at coastal roadways: a laboratory study   总被引:1,自引:1,他引:0  
Coastal roads are lifelines for bringing emergency personnel and equipment into affected areas after tsunamis, thus careful thought should be given to how to make roadways safer from tsunamis. Scouring at roadways is the primary damage caused by tsunamis; however, tsunami-induced scouring and beach erosion are less understood compared to tsunami runup and tsunami inundation. A set of laboratory experiments are reported in this study on tsunami-induced scour at a road model situated on a sandy beach. Our experiments showed that the distance between the shoreline and a roadway, which varies with tides, was a key factor affecting the scour depth at the road. Having the coastal road at about half of the inundation distance is not the most ideal location. The depth of road embedment did not affect the scour depth in our experiments. It was also found that for typical tsunamis, the scour depth is unlikely to reach its equilibrium stage. The information reported in this study is useful for local authorities to assess potential tsunami damage of roads and to have a better plan for tsunami disaster relief.  相似文献   

7.
This paper outlines the field measurements and numerical modelling carried out to develop a high-resolution tsunami inundation map, as a case study, for the city of Trincomalee on the east coast of Sri Lanka, which was devastated by the 2004 tsunami. We employ the deterministic approach together with numerical simulations based on the probable worst-case scenario to derive the inundation map. Linear and non-linear versions of shallow-water equations have been utilized to simulate tsunami propagation and onshore inundation, respectively. The field data considered in the present paper comprise the extent of inundation, the tsunami heights and the arrival times whilst the model results include the spatial distribution of the flow depth, the peak current speeds and the momentum flux. The computed extent of onshore inundation reproduces the observed overall pattern of inundation in most areas barring the south-eastern part of the city. Further, the model simulations suggest maximum flow depths up to about 2 m in most areas of the city whilst patches of flow depths exceeding 2 m can be seen in a narrow strip along the coastline. The computed current speeds also exceed 3 m/s at some locations adjacent to the shoreline.  相似文献   

8.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

9.
The last great earthquake in northern Chile took place in 1877, and the ensuing tsunami affected not only that region but also Central Chile. For example, the Bay of Concepción, which is located 1,500 km south of the tsunami source, experienced an inundation height of around 3 m. Ports are important in the Chilean economy, due to the fact that a large percentage of Chilean exports (excluding copper) use ports located in Central Chile. With this in mind, the authors investigated the potential effect of an 1877-like tsunami on the main ports of Central Chile. To do this, the dispersive wave model Non-hydrostatic Evolution of Ocean WAVEs was used. In addition, the first tsunami forecast model for Talcahuano, inside the Bay of Concepción, was developed by means of numerical simulation of several events of different moment magnitudes. The results showed that most of the important ports (Valparaiso, San Antonio, San Vicente and Coronel) had inundation heights on the order of just 1 m, while inundation levels in Talcahuano reached up to 3.5 m. The forecast model for Talcahuano uses only earthquake magnitude, focal depth and tide level to determine tsunami inundation heights. In addition, the tsunami arrival time was computed to be 3 h, and the maximum tsunami amplitude takes place at 4 h and 45 min after the earthquake.  相似文献   

10.
Little Andaman, the fourth largest island in the Andaman group of islands of India, was severely affected by the December 26, 2004, Indian Ocean tsunami generated by massive earthquake of moment magnitude 9.3 Mw which devastated the Andaman and Nicobar group of islands causing heavy damage to life and property. Due to hostile terrain conditions not much information was available on the extent of inundation and run-up along the island except for Hut Bay region. In order to study the vulnerability of the island to tsunami hazard, the inundation in the island due to the 2004 tsunami was studied using TUNAMI N2 numerical model and ENVISAT ASAR datasets. The extent of inundation derived from the SAR imagery was compared using the RTK-GPS field survey points collected in the Hut Bay regions immediately after the 2004 tsunami. The extent of inundation obtained from SAR images for the entire island was compared with inundation obtained from model. It was observed that the inundation obtained from the model matched well with inundation extent from SAR imagery for nearshore regions, while for low-lying areas and creeks large deviations were observed. In the absence of field datasets, the inundation derived from SAR imagery would be effective in providing ground data to validate the numerical models which can then be run for multiple scenarios for disaster mitigation and planning operation in areas that have hostile terrain conditions.  相似文献   

11.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   

12.
Yang  Lijiao  Kajitani  Yoshio  Tatano  Hirokazu  Jiang  Xinyu 《Natural Hazards》2016,83(1):411-423

This study proposes a probabilistic methodology for estimating the business interruption loss of industrial sectors as an extension of current methodology. The functional forms and parameters are selected and calibrated based on survey data obtained from businesses located in the inundated area at the time of the 2000 Tokai Heavy Rain in Japan. The Tokai Heavy Rain was a rare event that hit a densely populated and industrialized area. In the estimation of business interruption losses, functional fragility curves and accelerated failure time models are selected to estimate the extent of damage to production capacity and production recovery time. Significant explanatory variables, such as inundation depth, distinct vulnerability, and the resilience characteristics of each sector, as well as the accuracy of fit of the model, are analyzed in the study. The function obtained and the estimated parameters can be utilized as benchmarks in estimating the probabilistic distribution of business interruption losses, especially in the case of urban flood disasters.

  相似文献   

13.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

14.
This study develops a method for estimating the number of casualties that may occur while people evacuate from an inundation zone when a tsunami has inundated an area. The method is based on a simple model of hydrodynamic forces as they affect the human body. The method uses a Tsunami casualty index (TCI) computed at each grid point of a numerical tsunami model to determine locations and times within the tsunami inundation zone where evacuation during the tsunami inundation is not possible and therefore where casualties are likely to occur. The locations and times can be combined with information about population density to compute the potential number of casualties. This information is useful in developing tsunami evacuation routes that avoid such locations. To illustrate the method, it is applied to the Seattle waterfront in Washington State, USA, that is under the threat of possible tsunami disasters due to Seattle Fault earthquakes. Preliminary results suggest that the tsunami casualties may occur within the Seattle waterfront for 15 min, during the time interval from 3 to 18 min after a large Seattle Fault tsunami is generated when the background tide level is mean high water.  相似文献   

15.
The tsunami inundation flows on Banda Aceh, Indonesia reached 5 km inland during the December 26, 2004, event and devastated most of the houses, buildings, and infrastructure along the coast and killed more than 167,000 people. The overland flows from the northwest coast and the west coast collided at Lampisang village approximately 3.7 km from Ulee Lheue (northwest coast) and 6.8 km from Lhok Nga (west coast) as reported by survivors. Inundation modeling based on the nonlinear shallow-water wave equations reproduces the inundation pattern and demonstrates a colliding of the overland flows. The model suggests that wave characteristics on the northwest coast of Banda Aceh were different from those on the waves that impacted upon the west coast. The areas, which experienced higher inundation levels, did not always experience greatest overland flow speeds, and the damage areas mostly coincide with the flow speed distribution rather than the runup and inundation depth.  相似文献   

16.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

17.
This work analyses the potential consequences of two tsunami scenarios and their impacts on an oil refinery located in Sicily. Two credible tsunamis originating in the Tyrrhenian Sea were selected based on historical data. The potential for damage and hazardous materials releases resulting from the tsunami impacts to a refinery was assessed. The results obtained by the JRC tsunami propagation and inundation code HyFlux2 indicate that in both scenarios there would be eighteen storage tanks (of 43 located within 400 m from the shoreline) at the refinery subject to flooding. Water flow velocities were found to be generally low, <1 m/s, except for a central section of the refinery near the shoreline where the water flow velocities reach 3?C4 m/s. These results indicate that any damage would most likely occur due to buoyancy loads particularly in the western part of the facility where inundation levels are higher and storage tanks are less protected. Potential damage caused by impact of floating debris may be a problem in the central area of the refinery near the shoreline due to high flow velocities (3?C4 m/s) in both tsunami scenarios. Small hazardous materials releases could occur due to breakage of connected pipes and flanges caused by floating off of almost empty storage tanks or other equipment. Salt water intrusion could affect electrical equipment, such as control panels, pumps, and motors that are not raised above the inundation level. We conclude that in the two tsunami scenarios analysed, the risk to nearby residents and neighbouring facilities from potential hazardous materials releases, fires or explosions triggered by the tsunamis is likely to be small. Nonetheless, recommendations are made on prevention measures to reduce the risk of tsunami-triggered accidents and to mitigate their consequences if they do occur. The results of this study are limited by the uncertainty in the input data and most importantly by the accuracy of the elevation data and the model resolution.  相似文献   

18.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

19.
The widespread sheets of fine particulate sediment frequently deposited by tsunami constitute valuable evidence from which to reconstruct tsunami inundation. This is illustrated with evidence from three sites near Montrose, in eastern Scotland, U.K., where a horizon of mainly sand, laid down during the Holocene Storegga Slide palaeotsunami of circa 8000 BP is examined. The horizon is remarkably consistent in its distribution, morphology, stratigraphy, and particle size characteristics. These properties allow inferences to be made on the nature of tsunami flow onshore and run-up. It is suggested that estimates can be made of the possible depth of water involved from the characteristics of the sediment, and thus of the extent of inundation involved in the tsunami at these sites.  相似文献   

20.
Choi  Byung-Ho  Cho  Yong-Sik  Yoon  Sung Bum 《Natural Hazards》2016,84(2):437-454
The tsunamis that have occurred in many places around the world over the past decades have taken a heavy toll on human lives and property. The eastern coast of the Korean Peninsula is not safe from tsunamis and has sustained tsunami damage in the past. The aim of this study is to review the past, present, and future of some aspects of tsunami research in Korea. A composite numerical model comprising propagation and inundation models is described. The paper also covers tsunami mitigation efforts in Korea, and a tsunami hazard map is developed and introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号