首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two tree-ring chronologies for the southeastern Tibetan Plateau (TP), established by applying the signal-free regional curve standardization and standard dendrochronological methodologies to a set of ring-width series of Tibetan juniper. The relationship between tree growth and climate shows that temperature variability in the previous year is the primary factor controlling tree growth at the upper portion of the forest belt. Accordingly, we developed a mean annual temperature reconstruction covering the period A.D. 984–2009 and explaining 50 % of the instrumental variance. The spatial correlation patterns suggest that our temperature reconstruction is a reasonable proxy for temperature change over the TP. At long time scales, the temperature reconstruction shows similar warm-cold patterns to those in temperature records from other regions of the TP, indicating that decadal and multidecadal temperature variations were generally synchronous across the TP during the past millennium. The periods 1140–1350 and 1600–1800 were common warm and cold episodes over the TP, respectively. Comparison of our reconstruction with four Northern Hemisphere (NH) temperature series indicates that temperature changes on the southeastern TP have generally followed the NH temperature patterns during the past millennium. Our results also suggest that temperature variability over the TP is affected by the Atlantic Multidecadal Oscillation (AMO), with the warm (cool) phases of the AMO associated with above-average (below-average) temperatures over the TP.  相似文献   

2.
High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.  相似文献   

3.
Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ~(18)O), the annual temperature anomaly in southern China during 1850–2009 is reconstructed using the method of signal decomposition and synthesis. The results show that the linear trend was 0.47℃(100 yr)~(-1)over 1871–2009,and the two most rapid warming intervals occurred in 1877–1938 and 1968–2007, at rates of 0.125℃(10 yr)~(-1)and 0.258℃(10 yr)~(-1), respectively. The decadal variation shows that the temperature in the moderate warm interval of the 1910s–1930s was notably lower than that of the 1980s–2000s, which suggests that the warming since the 1980s was unprecedented for the past 160 years, though a warming hiatus existed in the 2000s. Additionally, there was a rapid cooling starting from the 1860s,followed by a cold interval until the early 1890s, with the coldest years in 1892 and 1893. A slight temperature decline was also found from the 1940s to the late 1960s. This study provides an independent case to validate the global warming for the past 160 years and its hiatus recently, because the proxy data are not affected by urbanization.  相似文献   

4.
We present new tree-ring width, δ13C, and δ18O chronologies from the Koksu site (49°N, 86° E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.  相似文献   

5.
The instrumental temperature record is of insufficient length to fully express the natural variability of past temperature. High elevation tree-ring widths from Great Basin bristlecone pine (Pinus longaeva) are a particularly useful proxy to infer temperatures prior to the instrumental record in that the tree-rings are annually dated and extend for millennia. From ring-width measurements integrated with past treeline elevation data we infer decadal- to millennial-scale temperature variability over the past 4,500 years for the Great Basin, USA. We find that twentieth century treeline advances are greater than in at least 4,000 years. There is also evidence for substantial volcanic forcing of climate in the preindustrial record and considerable covariation between high elevation tree-ring widths and temperature estimates from an atmosphere–ocean general circulation model over much of the last millennium. A long-term temperature decline of ~?1.1 °C since the mid-Holocene underlies substantial volcanic forcing of climate in the preindustrial record.  相似文献   

6.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

7.
Using 1,981 pieces of temperature records extracted from a selection of tree rings, ice cores, sediments, and other materials with high-resolution historical temperature proxy data, a temperature series of the past 2,000 years on the Tibetan Plateau (TP) with 10-year intervals was reconstructed by the method of single sample correction—multi-sample average integration equations. This series shows that the warm periods mainly appeared before 235 A.D., 775–1275 A.D. and 1845–2000 A.D., while the cold periods occurred 245–765 A.D., 1045–1145 A.D., and 1285–1835 A.D. The Little Ice Age left clear evidence on the TP and its coldest period was between 1635 and 1675 A.D. The Medieval Warm Period on the TP was not as warm as that in the late twentieth century. During the nineteenth century, overall temperature tends to be warmer with a clear rising trend, and in the late twentieth century new highs broke the record of the past 2,000 years. Power spectrum analysis shows that temperature on the TP changes consistently and evidently in a 150-year cycle. This integrated series also shows clear correlations with sunspot activity and solar radiation, as high sunspot activities generally led to warmer periods, and vice versa. Solar activities and intense radiation of recent years are naturally conducive to the global warming since the nineteenth century. The combination of greenhouse gases and natural fluctuations in climate has been the main culprit behind the global warming in the twentieth century.  相似文献   

8.
Based on homogenized land surface air temperature (SAT) data (derived from China Homogenized Historical Temperature (CHHT) 1.0), the warming trends over Northeast China are detected in this paper, and the impacts of urban heat islands (UHIs) evaluated. Results show that this region is undergoing rapid warming: the trends of annual mean minimum temperature (MMIT), mean temperature (MT), and mean maximum temperature (MMAT) are 0.40 C decade?1, 0.32 C decade?1, and 0.23 C decade?1, respectively. Regional average temperature series built with these networks including and excluding “typical urban stations” are compared for the periods of 1954–2005. Although impacts of UHIs on the absolute annual and seasonal temperature are identified, UHI contributions to the long-term trends are less than 10% of the regional total warming during the period. The large warming trend during the period is due to a regime shift in around 1988, which accounted for about 51% of the regional warming.  相似文献   

9.
A May–July precipitation nested reconstruction for the period AD 1415–2010 was developed from multi-century tree-ring records of Pinus nigra, Pinus brutia, and Cedrus brevifolia for Cyprus. Calibration and verification statistics for the period 1917–2010 show a good level of skill, and split-sample validation over 1917–2010 supports temporal stability of the tree-ring signal for precipitation. Smoothed annual time series of reconstructed precipitation and a tally of drought events in a moving time window indicate that the calibration period is not representative of the full range of drought variability. While convective precipitation in the warm season may be driven strongly by local factors, composite maps of geopotential height anomaly for dry years and wet years support large-scale atmospheric-flow influence related to height anomalies over the broader region of northeast Africa and the eastern Mediterranean. Emerging positive trend in reconstruction residuals may be an early sign of exacerbation of drought stress on trees by recent warming in May–July. Future warming expected from increases in greenhouse gases poses a threat to forest resources in Cyprus and elsewhere in the Mediterranean.  相似文献   

10.
Recent climate change is substantially affecting the spatial pattern of geographical zones, and the temporal and spatial inconsistency of climatic warming and drying patterns contributes to the complexity of the shifting of temperature and aridity zones. Eastern Inner Mongolia, China, located in the interface region of different biomes and ecogeographic zones, has experienced dramatic drying and warming over the past several decades. In this study, the annual accumulated temperature above 10 °C (AAT10) and the aridity index, two key indicators in geographical regionalization, are used to assess warming and drying processes and track the movements of temperature and aridity zones from 1960 to 2008. The results show a significant warming at the regional level from 1960 to 2008 with an AAT10 increase rate of 7.89 °C·d/year (p?<?0.001) in Eastern Inner Mongolia, while the drying trend was not significant during this period. Spatial heterogeneity of warming and drying distributions was also evident. Analysis of warming and drying via piecewise regression revealed two separate, specific trends between the first 31 years (1960–1990) and the subsequent 18 years (1991–2008). Generally, mild warming and very slight wetting occurred prior to 1990, while after 1991 both warming and drying were significant and enhanced. Continuous warming drove a northward shift of temperature zones from the 1960s to 2000s, while aridity zones displayed enhanced temporal and spatial variability. Climate change effects on temperature and aridity zones imply that the patterns of cropping systems, macro-ecosystems, and human land use modes are potentially undergoing migration and modification due to climate change.  相似文献   

11.
Spatial and temporal variability in daily maximum and mean average daily temperature, monthly maximum and mean average monthly temperature for nine coastal stations during the period 1956–2009 (54 years), and annual maximum and mean average temperature for coastal and inland stations for the period 1945–2009 (65 years) across Libya are analysed. During the period 1945–2009, significant increases in maximum temperature (0.017 °C/year) and mean average temperature (0.021 °C/year) are identified at most stations. Significantly, warming in annual maximum temperature (0.038 °C/year) and mean average annual temperatures (0.049 °C/year) are observed at almost all study stations during the last 32 years (1978–2009). The results show that Libya has witnessed a significant warming since the middle of the twentieth century, which will have a considerable impact on societies and the ecology of the North Africa region, if increases continue at current rates.  相似文献   

12.
We develop a summer temperature reconstruction for temperate East Asia based on a network of annual tree-ring chronologies covering the period 800–1989 C.E. The East Asia reconstruction is the regional average of 585 individual grid point summer temperature reconstructions produced using an ensemble version of point-by-point regression. Statistical calibration and validation tests indicate that the regional average possesses sufficient overall skill to allow it to be used to study the causes of temperature variability and change over the region. The reconstruction suggests a moderately warm early medieval epoch (ca. 850–1050 C.E.), followed by generally cooler ‘Little Ice Age’ conditions (ca. 1350–1880 C.E.) and 20th century warming up to the present time. Since 1990, average temperature has exceeded past warm epochs of comparable duration, but it is not statistically unprecedented. Superposed epoch analysis reveals a volcanic forcing signal in the East Asia summer temperature reconstruction, resulting in pulses of cooler summer conditions that may persist for several years. Substantial uncertainties remain, however, particularly at lower frequencies, thus requiring caution and scientific prudence in the interpretation of this record.  相似文献   

13.
Climate change and human activities: a case study in Xinjiang, China   总被引:4,自引:0,他引:4  
We examined both long-term climate variability and anthropogenic contributions to current climate change for Xinjiang province of northwest China. Xinjiang encompasses several mountain ranges and inter-mountain basins and is comprised of a northern semiarid region and a more arid southern region. Climate over the last three centuries was reconstructed from tree rings and temperature series were calculated for the past 50 years using weather station data. Three major conclusions from these analyses are: (1) Although temperature varied considerably in Xinjiang over the last 200 years, it was non-directional until the last 50 years when a substantial warming trend occurred; (2) The semiarid North Xinjiang was representative of the northern hemisphere climate, while the more arid South Xinjiang resembled the southern hemisphere climate, meanwhile, (3) The entire Xinjiang province captured the global-scale climate signal. We also compared human contributions to global change between North and South Xinjiang, including land cover/land use, population, and greenhouse gas production. For both regions, urban areas acted as heat islands; and large areas of grassland and forest were converted to barren land, especially in North Xinjiang. Additionally, North Xinjiang also showed larger increase in population and greenhouse gas emissions mainly associated with animal production than those in South Xinjiang. Although Xinjiang province is a geographically coupled mountain–basin system, the two regions have distinct climate patterns and anthropogenic activities related to land cover conversion and greenhouse gas production.  相似文献   

14.
Changes over the twentieth century in seasonal mean potential predictability (PP) of global precipitation, 200 hPa height and land surface temperature are examined by using 100-member ensemble. The ensemble simulations have been conducted by using an intermediate complexity atmospheric general circulation model of the International Center for Theoretical Physics, Italy. Using the Hadley Centre sea surface temperature (SST) dataset on a 1° grid, two 31 year periods of 1920–1950 and 1970–2000 are separated to distinguish the periods of low and high SST variability, respectively. The standard deviation values averaged for the (“Niño-3.4”; 5°S–5°N, 170°W–120°W) region are 0.71 and 1.15 °C, for the periods of low and high SST variability, respectively, with a percentage change of 62 % during December–January–February (DJF). The leading eigenvector and the associated principal component time series, also indicate that the amplitude of SST variations have positive trend since 1920s to recent years, particularly over the El Niño Southern Oscillation (ENSO) region. Our hypothesis states that the increase in SST variability has increased the PP for precipitation, 200 hPa height and land surface temperature during the DJF. The analysis of signal and noise shows that the signal-to-noise (S/N) ratio is much increased over most of the globe, particularly over the tropics and subtropics for DJF precipitation. This occurs because of a larger increase in the signal and at the same time a reduction in the noise, over most of the tropical areas. For 200 hPa height, the S/N ratio over the Pacific North American (PNA) region is increasing more than that for the other extratropical regions, because of a larger percentage increase in the signal and only a small increase in noise. It is also found that the increase in seasonal mean transient signal over the PNA region is 50 %, while increase in the noise is only 12 %, during the high SST variability period, which indicates that the increase in signal is more than the noise. For DJF land surface temperature, the perfect model notion is utilized to confirm the changes in PP during the low and high SST variability periods. The correlation between the perfect model and the other members clearly reveal that the seasonal mean PP changed. In particular, the PP for the 31 years period of 1970–2000 is higher than that for the 31 years period of 1920–1950. The land surface temperature PP is increased in northern and southern Africa, central Europe, southern South America, eastern United States and over Canada. The increase of the signal and hence the seasonal mean PP is coincides with an increase in tropical Pacific SST variability, particularly in the ENSO region.  相似文献   

15.
利用多条树轮资料重建青海高原近250年年平均气温序列   总被引:14,自引:7,他引:7  
通过青海高原不同区域的多条树轮年表和青海高原温度的统计分析,探讨了用多条树轮年表重建整个青海高原年平均气温的途径和方法。高原上树轮年表与温度存在较好的对应关系,温度是年轮变化的主要控制因子之一,特别是树轮年表较好地反映了最低气温的变化。树轮年表中差值年表(RES)对温度变化的反映最好。本文用6条树轮年表资料重建了青海高原近250年的年平均气温序列。  相似文献   

16.
Non-uniform interhemispheric temperature trends over the past 550 years   总被引:1,自引:0,他引:1  
The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30–60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change.  相似文献   

17.
Eight tree-ring chronologies from coastal sites along the Gulf of Alaska (GOA) are used to develop a 227-year (1762–1988) reconstruction of spring/summer (March–September) coastal land temperatures for the region. This reconstruction explains 35% of the variance in the instrumental temperature data. The tree-ring records and reconstruction reflect the documented 1976 transition from cold to warm conditions in the North Pacific and are consistent with regional temperature compilations. Three of the eight ring-width series, from elevational timberline sites where trees are particularly stressed by temperature, extend back to A.D. 1600 and are used to identify additional occurrences of such transitions. The first principal component (PC) scores of these three longer records are positively correlated with spring (March–May) land and sea surface temperatures for the GOA region and are used to reconstruct land surface temperatures. Decadal-scale fluctuations in the reconstructions show agreement with decade-long changes in the intensity of the Aleutian Low pressure cell over the past century, suggesting that the tree-ring data may provide an index of past circulation changes for the northeast Pacific. Blackman-Tukey spectral analyses of both reconstructions indicate significant power at 7–11 years, with additional peaks at 3 years for the spring/summer reconstruction and 19 years for the longer spring temperature series. The modes of variation at about 3 and 7 years may correspond to those associated with the El Niño-Southern Oscillation bandwidth, whereas the 19-year term may relate to a proposed 20-year cycle of North Pacific circulation. The spring temperature series shows generally increased growth over the past century, coinciding with warmer spring temperatures in south coastal Alaska over this interval. Comparison with the entire spring series suggests that the recent warming exceeds temperature levels of prior centuries, extending back to A.D. 1600.  相似文献   

18.
 Distinct periods of warmth have been identified in instrumental records for New Zealand and the surrounding southwest Pacific over the past 120 years. Whether this warming is due to natural climate variability or the effects of increasing greenhouse gases is difficult to determine given the limited length of instrumental record. Longer records derived from tree rings can help reduce uncertainties in detection of possible causes of climatic change, although relatively few such records have been developed for the Southern Hemisphere. In this work, we describe five temperature-sensitive tree-ring width chronologies for New Zealand which place the recent warming trend into a long-term (pre-anthropogenic) context. Included are three pink pine (Halocarpus biformis) chronologies, two for Stewart Island and one for the North Island of New Zealand. Two silver pine (Lagarostrobus colensoi) series, one each from the North and South Islands, are updated from previous work. The length of record ranges from AD 1700 for Putara, North Island to AD 1400 for Ahaura, South Island. The pink and silver pine are different species from those used previously to reconstruct temperatures for New Zealand. All five chronologies are positively and significantly correlated with warm-season (November-April) individual station temperature records, a New Zealand-wide surface air temperature index and gridded land/marine temperatures for New Zealand and vicinity. The highest 20 and 40-year growth periods in all five tree-ring series coincide with the New Zealand temperature increase after 1950. An exception is found for the 40-year interval at Ahaura, the least temperature-sensitive of the five sites. A t-test comparison indicates that these recent growth intervals are significantly higher (0.01 to 0.0001 level) than any of those prior to the twentieth century for three of the five sites, dating as far back as AD 1500. The results suggest that the recent warming has been distinctive, although not clearly unprecedented, relative to temperature conditions inferred from tree-ring records of prior centuries. Received: 18 February 1997/Accepted: 11 September 1997  相似文献   

19.
20.
We developed four Georgei fir (Abies georgei var. smithii) tree-ring width chronologies at the timberline in the Sygera Mts. in southeast Tibet, China. All individual standard chronologies and a regional well-replicated ring-width composite chronology (RC) show significantly positive correlations with mean summer (June-August) temperature. Herein mean summer temperature was reconstructed for southeast Tibet back to A.D. 1765 based on RC. This reconstruction successfully captures recent warming observed in the instrumental record since 1961 with the last decade being the warmest period in the past 242 years. It agrees in general with other temperature reconstructions of the Tibetan Plateau and extratropical northern hemisphere. This study allows seeing recent warming on a longer time scale in southeast Tibet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号