首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Marine Chemistry》2002,77(1):23-41
Chromophoric dissolved organic matter (CDOM) is the light absorbing fraction of dissolved organic carbon (DOC). The optical properties of CDOM potentially permit remote sensing of DOC and CDOM, and correction for CDOM absorption is essential for remote sensing of chlorophyll a (chl a) in coastal and estuarine waters. To provide data for this purpose, we report the distributions of CDOM, DOC, and chl a from seven cruises in Chesapeake Bay in 1994–1997. We observed non-conservative distributions of chl a and DOC in half of the cruises, indicating net accumulations within the estuary; however, there were no net accumulations or losses of CDOM, measured as absorption at 355 nm or as fluorescence. Freshwater end member CDOM absorption varied from 2.2 to 4.1 m−1. Coastal end member CDOM absorption was considerably lower, ranging over 0.4–1.1 m−1. The fluorescence/absorption ratio was similar to those reported elsewhere for estuarine and coastal waters; however, in the lower salinity/high CDOM region of the Bay, the relationship was not constant, suggestive of the mixing of two or more CDOM sources. Chl a was not correlated with the absorption for most of the cruises nor for the data set as a whole; however, CDOM and DOC were significantly correlated, with two groups evident in the data. The first group had high CDOM concentrations per unit DOC and corresponded to the conservative DOC values observed in the transects. The second group had lower CDOM concentrations per unit DOC and corresponded to the non-conservative DOC values associated with net DOC accumulation near the chl a maximum on the salinity gradient. This indicates the production of non-chromophoric DOC in the region of the chl a maximum of Chesapeake Bay. In terms of remote sensing, these data show that (1) the retrieval of the absorption coefficient of CDOM from fluorescence measurements in the Bay must consider the variability of the fluorescence/absorption relationship, and (2) estimates of DOC acquired from CDOM absorption will underestimate DOC in regions with recent, net accumulations of DOC.  相似文献   

2.
Hydrographic, current meter and ADCP data collected during two recent cruises in the South Indian Ocean (RRS Discovery cruise 200 in February 1993 and RRS Discovery cruise 207 in February 1994) are used to investigate the current structure within the Princess Elizabeth Trough (PET), near the Antarctic continent at 85°E, 63–66°S. This gap in topography between the Kerguelen Plateau and the Antarctic continent, with sill depth 3750 m, provides a route for the exchange of Antarctic Bottom Water between the Australian–Antarctic Basin and the Weddell–Enderby Basin. Shears derived from ADCP and hydrographic data are used to deduce the barotropic component of the velocity field, and thus the volume transports of the water masses. Both the Southern Antarctic Circumpolar Current Front (SACCF) and the Southern Boundary of the Antarctic Circumpolar Current (SB) pass through the northern PET (latitudes 63 to 64.5°S) associated with eastward transports. These are deep-reaching fronts with associated bottom velocities of several cm s-1. Antarctic Bottom water (AABW) from the Weddell–Enderby Basin is transported eastwards in the jets associated with these fronts. The transport of water with potential temperatures less than 0°C is 3 (±1) Sv. The SB is shown to meander in the PET, caused by the cyclonic gyre immediately west of the PET in Prydz Bay. The AABW therefore also meanders before continuing eastwards. In the southern PET (latitudes 64.5 to 66°S) a bottom intensified flow of AABW is observed flowing west. This AABW has most likely formed not far from the PET, along the Antarctic continental shelf and slope to the east. Current meters show that speeds in this flow have an annual scalar mean of 10 cm s-1. The transport of water with potential temperatures less than 0°C is 20 (±3) Sv. The southern PET features westward flow throughout the water column, since the shallower depths are dominated by the flow associated with the Antarctic Slope Front. Including the westward flow of bottom water, the total westward transport of the whole water column in the southern PET is 45 (±6) Sv.  相似文献   

3.
Vertical attenuation of light through the water column (Kd) is attributable to the optically active components of phytoplankton, suspended particulate material (SPM) and chromophoric dissolved organic matter (CDOM). Of these, CDOM is not routinely monitored and was the main focus of this study. Concentrations and spatio-temporal patterns of CDOM fluorescence were investigated between August 2004 and March 2006, to quantify the correlation coefficient between CDOM and salinity and to better characterise the contribution of CDOM to Kd. Sampling was conducted at a broad range of UK and Republic of Ireland locations; these included more than 15 estuaries, 30 coastal and 70 offshore sites in the southern North Sea, Irish Sea, Liverpool Bay, Western Approaches and the English Channel.An instrument package was used; a logger with multi-sensor array was deployed vertically through the water column and concurrent water samples were taken to determine salinity, CDOM fluorescence and SPM. Surface CDOM fluorescence values ranged between 0.05 and 16.80 S.Fl.U. (standardised fluorescence units). A strong, negative correlation coefficient of CDOM to salinity (r2 = 0.81) was found. CDOM absorption (aCDOMλ) was derived from fluorescence measurements and was in the range 0.02–2.2 m1 with mean 0.15 m1. These results were comparable with direct measurements of aCDOMλ in the same geographic regions, as published by other workers.Spatial differences in CDOM fluorescence were generally explicable by variation in salinity, in local conditions or catchment areas; e.g. CDOM at the freshwater end was 3.54–11.30 S.Fl.U., reflecting the variety of rivers sampled and their different catchments. Temporal changes in CDOM fluorescence were related to salinity. A significant and positive correlation was found between CDOM and Kd, and although CDOM was found to be less influential than SPM on Kd, it was still of significance particularly in coastal and offshore waters of lower turbidity.  相似文献   

4.
杨芳  涂芳  刘杰  郑文杰 《海洋科学》2012,36(6):84-88
用光谱法研究了 Te(IV)对螺旋藻(Spirulina maxima)的胁迫作用.各实验组添加 Te(IV)的时间均在第5~7天,累积添加质量浓度为从450~650 mg/L.结果表明,各 Te(IV)胁迫实验组中活藻体悬浮液的吸收光谱特征峰强度均不同程度地下降.而在440、580 nm 激发所得的荧光发射光谱峰位置不变,峰强度下降.但干粉的荧光光谱与活藻体悬浮液有明显不同,干粉中的藻胆体的能量传递过程受阻.各试验组干藻粉的红外光谱无明显差异  相似文献   

5.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

6.
For studies in bio-optical oceanography, visible light properties by classes of dissolved organic matter should be characterized. The regional adjustment of model parameters is one approach which is being widely used to refine bio-optical models. In the present study, buoy and laboratory data were acquired, and during the 15-day observation period an algal bloom event occurred. The absorption coefficient of CDOM at 443 nm, ag(443), changed in the range of 0.09–0.35 m−1 and 0.1–0.34 m−1 for two depths, 0.32 m and 2.3 m., respectively, throughout the entire period. CDOM absorption was larger for bloom conditions than for non-bloom conditions. In addition, the fraction of CDOM in total absorption was higher during the bloom event than that of non-bloom conditions. The spectral slope of CDOM absorption, Sg, regressed over 400–500 nm, ranged from 0.015 to 0.0185 nm−1 with an average of 0.0166 nm−1. CDOM fluorescence intensity (Fcdom) was obtained using an internal Raman standard and varied over the range of 467.44–1538.23 in relative units. Variations in Fcdom showed a similar pattern to that of CDOM absorption. A robust non-linear relationship between Fcdom and CDOM absorption was found, with a correlation coefficient of 0.893, throughout the whole observation. An attempt to describe Sg with absorption showed a promising consequence that can be described with a negative correlation during the bloom, however, without any distinguishable tendency for non-bloom time span. A two-band ratio algorithm was also carried out for retrieving CDOM absorption. The variations in optical properties of CDOM may be related to the complicated environment in the estuarine waters, which may result from different sources of CDOM.  相似文献   

7.
During the US JGOFS process studies in the Arabian Sea (1995), secondary fluorescence maxima (SFM) were observed frequently at the oxic–anoxic interface at the extreme base of the euphotic zone. These secondary peaks were most prominent during the early NE monsoon in the central oligotrophic portion of the Arabian Sea, although they were spatially and temporally variable. Based on high performance liquid chromatography (HPLC) and flow cytometry analyses, SFM were determined to be populated almost exclusively by the marine cyanobacterium Prochlorococcus spp. While SFM were about half the magnitude of primary fluorescence peaks, chlorophyll a biomass was typically an order of magnitude less than at the primary maxima (although total chlorophyll (a+b) differed only by a factor of two). Photosynthesis versus irradiance response curves revealed an efficient population adapted to extremely low light (∼0.02–0.05% surface irradiance) largely through increased light absorption capabilities. A theoretical spectral irradiance absorption efficiency model based on available spectral irradiance, individual cell properties, and bulk particulate spectral absorption also supports a well-adapted low-light population. Deck-incubated C-14 uptake as well as dilution growth experiments revealed instantaneous growth rates on the order of μ=0.01 d−1. However, additional in situ observations suggest SFM populations may be more dynamic than the growth rates estimates from shipboard bottle incubations predict. We advance four hypotheses for the regulation of SFM populations including: (1) reduced loss rates, (2) discontinuous environmental conditions, (3) enhanced sub-oxic growth, and (4) physical mechanisms.  相似文献   

8.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

9.
Chromophoric dissolved organic matter (CDOM) is the major light absorber in the Baltic Sea. In this study, excitation emission matrix (EEM) fluorescence spectra and UV–visible absorption spectra of CDOM are reported as a function of salinity. Samples from different locations and over different seasons were collected during four cruises in 2002 and 2003 in the Baltic Sea in both Pomeranian Bay and the Gulf of Gdansk. Absorption by CDOM decreased with increased distance from the riverine source and reached a relatively stable absorption background in the open sea. Regression analysis showed that fluorescence intensity was linearly related to absorption by CDOM at 375 nm and aCDOM(375) absorption coefficients were inversely related to salinity. Analysis of CDOM-EEM spectra indicated that a change in composition of CDOM occurred along the salinity gradient in the Baltic Sea. Analysis of percent contribution of respective fluorophore groups to the total intensity of EEM spectra indicated that the fluorescence peaks associated with terrestrial humic components of the CDOM and total integrated fluorescence decreased with decreasing CDOM absorption. In contrast, the protein-like fraction of CDOM decreased to a lesser degree than the others. Analysis of the percent contribution of fluorescence peak intensities to the total fluorescence along the salinity gradient showed that the contribution of protein-like fluorophores increased from 2.6% to 5.1% in the high-salinity region of the transect. Fluorescence and absorption changes observed in the Baltic Sea were similar to those observed in similar transects that have been sampled elsewhere, e.g. in European estuaries, Gulf of Mexico, Mid-Atlantic Bight and the Cape Fear River plume in the South Atlantic Bight, although the changes in the Baltic Sea occurred over a much smaller salinity gradient.  相似文献   

10.
In this study, the CDOM absorption coefficient at 350 nm [aCDOM(350)] and CDOM excitation emission matrix (EEM) fluorescence were used to estimate annual fluxes of dissolved organic carbon (DOC) from the Cape Fear River to Long Bay in the South Atlantic Bight. Water samples were collected during a 3.5 year period, from October 2001 through March 2005, in the vicinity of the Cape Fear River (CFR) outlet and adjacent Onslow Bay (OB). Parallel factor analysis (PARAFAC) of CDOM EEM spectra identified six components: three terrestrial humic-like, one marine humic-like and two protein-like. Empirical relationships were derived from the PARAFAC model between DOC concentration and aCDOM(350), total fluorescence intensity and the intensities of respective EEM components. DOC concentration and CDOM optical parameters were very well correlated and R2 values ranged from 0.77 to 0.90. Regression analyses revealed that the non-absorbing DOC fraction, in DOC concentration estimated from CDOM optical parameters, varied with the qualitative composition of the CDOM. DOC concentration and intensity of the humic-like CDOM components characterized by excitation maxima at longer wavelengths have significantly higher estimated non-absorbing DOC compared to the analogous relationships between DOC and intensity of the humic-like CDOM components characterized by excitation maxima at shorter wavelengths. The relationships between DOC concentration and intensity of one of the protein-like components resulted in significantly reduced non-absorbing DOC fraction in DOC concentration estimation. Results of regression analyses between fluorescence intensities of specific EEM components and CDOM-specific absorption coefficients suggest that the relative proportion of humic-like CDOM components (characterized by excitation maximum at longer wavelengths) and the main protein-like component have the most impact on the values of a?CDOM(350). Based on the relationships between aCDOM(350), Cape Fear River flow, and DOC concentrations, DOC fluxes were estimated for 2002, 2003 and 2004. DOC fluxes varied from 1.5 to 6.2 × 1010 g C yr? 1, depending on river flow.  相似文献   

11.
The effects of monochromatic and polychromatic UV and visible (VIS) radiation on the optical properties (absorption and fluorescence) of chromophoric dissolved organic matter (CDOM) were examined for a Suwannee River fulvic acid (SRFA) standard and for water from the Delaware and Chesapeake Bays. The primary (direct) loss of absorption and fluorescence occurred at the irradiation wavelength(s), with smaller secondary (indirect) losses occurring outside the irradiation wavelength(s). The efficiency of both direct and indirect photobleaching decreased monotonically with increasing wavelength. Exposure to polychromatic light increased the CDOM absorption spectral slope (S), consistent with previous field measurements. An analysis of the monochromatic photobleaching kinetics argues that a model based on a simple superposition of multiple chromophores undergoing independent photobleaching cannot apply; this conclusion further implies that the absorption spectrum of CDOM cannot arise solely from a simple superposition of the spectra of numerous independent chromophores. The kinetics of CDOM absorption loss with the monochromatic irradiation were employed to create a simple, heuristic model of photobleaching. This model allowed us to examine the importance of the indirect photobleaching losses in determining the overall photobleaching rates as well as to model the photobleaching of natural waters under polychromatic light fields. Application of this model to natural waters closely predicted the change in the CDOM spectral shape caused by photodegradation. The time scale of this process was consistent with field observations acquired during the summertime for coastal waters in the Middle Atlantic Bight (MAB). The results indicate that the ratio of the photodegradation depth to the mixed layer depth is a key parameter controlling the rate of the photobleaching in surface waters.  相似文献   

12.
Spectral absorption coefficients of total particulate material and detritus were measured throughout the euphotic zone along the equator between 165°E and 150°W and during time-series for each of these two longitudes in October 1994 (JGOFS-FLUPAC cruise). The sum of pigments obtained by spectrofluorometry (tChla=DV−chla+Chla) was used for normalization (and was also compared to fluorometric and HPLC measurements as an intercalibration study). In order to assess the specific absorption coefficient of photosynthetically active pigments (aps) from the pigment-specific absorption coefficient for phytoplankton (aph*), we made a multiple regression analysis of measured phytoplankton absorption spectra onto publishedin vivo spectra of pure pigments. This made it possible to calculate the concentrations of photoprotective carotenoids (tPPC) when HPLC measurements were not available and thus to subtract their contribution to absorption from the total phytoplanktonic absorption coefficient (aph). Methodological uncertainties in both coefficients used for calculating absorption coefficients and in pigment measurements are discussed. Pigments and absorption measurements made during the cruise enabled us to describe two typical trophic regimes in the equatorial Pacific ocean: oligotrophic waters of the ”warm pool“ west of 170°W and high-nutrient, low-chlorophyll waters (HNLC) of the upwelling east of 170°W. The vertical decreasing gradient of aph* from the surface to the deep chlorophyll maximum (DCM) was due to a high tPPC/tChla ratio at the surface and was higher in the oligotrophic (0.14-0.065 m2 mg (tChla)−1 biomass dominated byProchlorococcus, rich in zeaxanthin) than in the mesotrophic area (0.07-0.06 m2 mg (tChl a)-' biomass dominated by picoeucaryotes). Below the DCM,aph* reached a similar minimum value in both oligotrophic and mesotrophic areas.a*ps varied less than a*ph from the surface layer to the DCM in both oligotrophic and mesotrophic areas. The difference in a*ph and a*ps from west to east of the transect could be interpreted as a shift in the phytoplankton composition, with a dominance of procaryotes in the west and a dominance of eucaryotes in the upwelling area. Higher aps in well-lit typical oligotrophic waters indicated that phytoplankton communities dominated byProclorococcus might be more efficient for capturing light usable for photosynthesis than those present in the HNLC situation.  相似文献   

13.
《Marine Chemistry》2002,77(1):1-6
An anion chromatography with ultraviolet detection (IC/UV) method was developed to simultaneously measure NO3, NO2, and HS concentrations in saline (pore)waters. This method achieves nanomolar detection limits without the need for a Cd/Cu reducing column and requires <100 μl volume of sample, making it ideal for use in porewaters, where high sulfide concentrations can be present. Bromide and iodide among other anions are also measurable by this technique because of their UV absorption properties. Sample filtration is the only sample treatment required before analysis.  相似文献   

14.
Our experience in DNA alteration assessment tells us that aquatic vertebrates, in general, and also some of the invertebrates, by living in polluted areas acquire altered DNA; DNA alterations being defined either as single-strand breaks, and/or alkali sensitive or single-strand specific nuclease-cleavable sites (sse). This can be shown by several methods: (i) Alkaline filter elution;1 (ii) fluorescence analysis of DNA unwinding;2 (iii) alkaline sucrose density gradient centrifugation;3 (iv) alkaline unwinding analysis with hydroxyapatite differentiation;4 (v) nucleoid sedimentation analysis;5 (vi) supercoiled DNA relaxation detection by electrophoresis;6 and (vii) measurement of DNA molecular weight distributions with the electron microscope.7 The amount of sse per DNA mass can be a function of either an increased activity of DNA damaging agents or agents that inhibit DNA repair. Among DNA damaging agents are polycyclic aromatic hydrocarbons (PAH), that can cause sse by the ‘fast effect’8 or after induction upon uptake, through the action of mixed function oxygenase (MFO). Since MFO induction within certain limits is a function of PAH concentration measurement of this enzyme activity enables at least partial interpretation of the DNA alteration status, which can be a two-phase process.  相似文献   

15.
In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide(1.10×10~(24) J) than in Exp_Control(0.91×10~(24) J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.  相似文献   

16.
The Wadden Sea, a shallow coastal area bordering the North Sea, is optically a complex area due to its shallowness, high turbidity and fast changes in concentrations of optically active substances. This study gathers information from the area on concentrations of suspended particulate matter (SPM), Chlorophyll-a (Chl-a), and Coloured Dissolved Organic Matter (CDOM), on total absorption and beam attenuation, and on reflectances from the whole area. It examines the processes responsible for variations in these. Sampling took place at 156 stations in 2006 and 2007. At 37 locations also the specific inherent optical properties (SIOPs) were determined. Results showed large concentration ranges of 2–450 (g m-3) for SPM, 2–67 (mg m-3) for Chl-a, and 0–2.5 m−1 for CDOM(440) absorption. Tides had a large influence on the SPM concentration, while Chl-a had a mainly seasonal pattern. Resuspension lead to a correlation between SPM and Chl-a. The absorption of CDOM had a spatial variability with extremely high values in the Dollard, although the slope of CDOM absorption spectra was comparable with that of the North Sea. The Chl-a specific pigment absorption proved to be influenced by phytoplankton species and specific absorption of non-algal particles at 440 nm was correlated with the mud content of the soil at the sample locations. SPM specific absorption was not found to correlate with any measured factor. As the concentrations of optically active substances changed, we also found spatial and temporal variability in the absorption, beam attenuation and reflectances. Reflectance spectra categorized in groups with decreasing station water depths and with extreme CDOM and SPM concentrations showed distinguishable shapes.  相似文献   

17.
A highly sensitive laser-induced fluorescence (LIF) system has been developed to study the fluorescence of dissolved organic carbon (DOC) in the marine environment. The LIF detector has a detection limit of 10 attomoles (10 × 10−18 moles) of pterin and eliminates internal quenching in highly fluorescent samples such as anoxic porewaters encountered when using conventional fluorometry. LIF analysis is rapid, reproducible, and uses only 100 μl of a sample. This small size requirement permits fluorescence analyses of samples often available only in limited amounts, such as porewaters, hydrothermal vent waters, and rainwaters. In addition, the LIF detection system may greatly simplify extraction and separation procedures required to characterize the fluorescent components of DOC.  相似文献   

18.
《Marine Chemistry》2002,77(1):7-21
We tested whether phytoplankton are a direct source of chromophoric dissolved organic matter (CDOM) fluorescence in a series of experiments. In the first experiment, sonication of 11 dense algal cultures from several algal classes revealed no immediate release of CDOM fluorescence. In a second experiment, using nutrient addition bioassays from a range of sites in the mid-Atlantic region, we found no increase in CDOM fluorescence when nutrient limitation was alleviated despite large increases in chlorophyll a over 3–5 days. In a third experiment, the change in CDOM fluorescence over a 28-day period in five non-axenic algal batch cultures was measured. There was little or no increase in CDOM fluorescence until the cultures entered the stationary phase, whereupon an exponential increase in CDOM fluorescence was observed. In a fourth set of experiments, the production of CDOM fluorescence was examined in a series of cultures of Skeletonema costatum and Prorocentrum minimum. In the dark, in the absence of autotrophic growth, we observed slow rates of CDOM fluorescence production (0.02–0.05 NFlU day−1). Rates were much higher in parallel lighted cultures (0.1–0.2 NFlU day−1) but were more related to bacterial counts than to algal biomass. In a third phase of this experiment, when illuminated, stationary phase cultures were filtered through 1-μm pore size filters and incubated in the dark, CDOM fluorescence production continued unchanged. These results are consistent with the hypothesis that phytoplankton are not a direct source of CDOM fluorescence in marine and estuarine environments and that CDOM fluorescence is produced by bacteria using non-fluorescent organic matter derived from phytoplankton.  相似文献   

19.
The spatial distribution of ammonia-oxidizing Betaproteobacteria ( β AOB) was investigated by FISH (fluorescence in situ hybridization) and DGGE (denaturing gradient gel electrophoresis) techniques in the sediment off the Changjiang River Estuary.Sediment samples were collected from eight stations in June before the formation of hypoxia zone in 2006.The abundance of β AOB ranged from 1.87 × 10 5 to 3.53 × 10 5 cells/g of sediment.β AOB abundance did not present a negative correlation with salinity,whereas salinity was implicated as the primary factor affecting nitrification rates.The DGGE profiles of PCR-amplified amo A gene fragments revealed that the β AOB community structure of sample S2 separated from other samples at the level of 40% similarity.The variations in composition of β AOB were significantly correlated with the salinity,temperature,absorption ability of sediments and TOC. The statistical analysis indicates that the β AOB abundance was a main factor to influence nitrification rates with an influence ratio of 87.7% at the level of 40% biodiversity similarity.Considering the good correlation between β AOB abundance and nitrification estimates,the abundance and diversity of β AOB community could be expected as an indirect index of nitrification activity at the study sea area in summer.  相似文献   

20.
One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. In estuaries, CDOM concentrations vary due to changes in salinity gradients, inflows of industrial and domestic effluents, and the production of new dissolved organic matter from marine biologic activity. CDOM absorption data have been collected from a variety of waters. However, there are a limited number of measurements along the US east coast and a general lack of data from New England waters.This study characterized the temporal and spatial variability of CDOM absorption over an annual cycle in Narragansett Bay and Block Island Sound (Rhode Island). Results suggested that, in Narragansett Bay, the magnitude of CDOM absorption is related to the seasonal variability of freshwater input from surrounding watersheds and new CDOM production from in situ biologic activity. The data show that the average CDOM absorption coefficient at 412 nm was 0·45 m−1 and the average spectral slope was 0·020 nm−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号