首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
海底麻坑是与流体逸散相关的一种海底凹陷地貌, 在全球海域的陆架、陆坡和深海平原等均有广泛发育。文章利用高分辨率的多波束测深数据和三维地震资料, 在中建南盆地北部识别出330个规模不等的海底麻坑, 按照麻坑形态可将其分为: 圆形、椭圆形、长条形及新月形麻坑。研究区内海底麻坑直径可达1500~7900m, 最大深度可达175m, 其中圆形麻坑规模(直径、深度)小于椭圆形、长条形和新月形麻坑, 表明圆形麻坑处于麻坑发育早期阶段。三维地震资料显示不同类型海底麻坑的下伏地层中均发育有断层、气烟囱、裂隙等流体逸散通道, 为该区域海底麻坑形成提供了有利条件。在海底麻坑演化过程中, 底流对海底麻坑的地貌形态具有改造作用。当圆形麻坑下伏地层流体活动强烈时, 流体可沿着运移通道直接向麻坑内壁渗漏, 使得其内壁塌陷, 逐渐演化成椭圆形麻坑。由于椭圆形麻坑处于底流活动影响的早期阶段, 其受底流改造作用较弱。在持续性底流活动的强烈改造作用下, 紧密排列的圆形或椭圆形麻坑逐渐拉伸演变成长条形麻坑。当底流作用于孤立的圆形麻坑时, 在底流的上游侧沉积速率增加, 麻坑在上游侧接受沉积被掩埋, 下游侧地层被侵蚀, 从而形成新月形麻坑。根据研究区海底麻坑成因机制分析, 文章首次提出了一种展示中建南盆地不同类型海底麻坑演化过程模型, 该模型有助于理解中建南盆地流体逸散过程和底流活动, 并且可为其他区域海底麻坑演化过程研究提供参考。  相似文献   

2.
Based on the analysis of the high-resolution 3D seismic data from the SW Barents Sea we study the hydrocarbon plumbing system above the Snøhvit and Albatross gas field to investigate the geo-morphological manifestation and the dynamics of leakage from the reservoir. Fluid and gas escape to the seafloor is manifested in this area as mega-pockmarks 1–2 km-wide, large pockmarks (<100 m wide) and giant pockmarks 100–300 m-wide. The size of the mega pockmarks to the south of the study area may indicate more vigorous venting, whilst the northern fluid flow regime is probably characterised by a widespread fluid and gas release. Buried mega depressions and large-to-giant pockmarks are also identified on the base Quaternary and linked to deep and shallow faults as well as to seismic pipes. A high density of buried and seafloor giant pockmarks occur above a network of faults overlying an interpreted Bottom Simulating Reflector (BSR), whose depth coincides with the estimated base of the hydrate stability zone for a thermogenically derived gas hydrate with around 90 mol% methane. Deep regional faults provide a direct route for the ascending thermogenic fluids from the reservoir, which then leaked through the shallow faults linked to seismic pipes. It is proposed that the last episodic hydrocarbon leakage from the reservoir was responsible for providing a methane source for the formation of gas hydrates. We inferred that at least two temporally and dynamically different fluid and gas venting events took place in the study area: (1) prior to late Weichselian and recorded on the Upper Regional Unconformity (URU) and (2) following the Last Glacial Maximum between ∼17 and 16 cal ka BP and recorded on the present-day seafloor.  相似文献   

3.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

4.
Based on high-resolution Chirp seismic, multibeam bathymetry and side scan sonar data collected in the ?zmir Gulf, Aegean Sea in 2008 and 2010, gas-related structures have been identified, which can be classified into three categories: (1) shallow gas accumulations and gas chimneys, (2) mud diapirs, and (3) active and inactive pockmarks. On the Chirp profiles, shallow gas accumulations were observed along the northern coastline of the outer ?zmir Gulf at 3-20 m below the seabed. They appear as acoustic turbidity zones and are interpreted as biogenic gas accumulations produced in organic-rich highstand fan sediments from the Gediz River. The diapiric structures are interpreted as shale or mud diapirs formed under lateral compression due to regional counter-clockwise rotation of Anatolian microplate. Furthermore, the sedimentary structure at the flanks suggests a continuous upward movement of the diapirs. Several pockmarks exist close to fault traces to the east of Hekim Island; most of them were associated with acoustic plumes indicating active degassing during the survey period in 2008. Another Chirp survey was carried out just over these plumes in 2010 to demonstrate if the gas seeps were still active. The surveys indicate that the gas seep is an ongoing process in the gulf. Based on the Chirp data, we proposed that the pockmark formation in the area can be explained by protracted seep model, whereby sediment erosion and re-distribution along pockmark walls result from ongoing (or long lasting) seepage of fluids over long periods of time. The existence of inactive pockmarks in the vicinity, however, implies that gas seepage may eventually cease or that it is periodic. Most of the active pockmarks are located over the fault planes, likely indicating that the gas seepage is controlled by active faulting.  相似文献   

5.
High resolution and multichannel seismic profiles coupled with multibeam echosounder (seafloor relief) data, acquired along the northern Sicily continental margin (southern Tyrrhenian Sea), document the occurrence of mound and pockmark features, revealing fluid escape processes. Along this margin, morphology of the high-gradient continental slope is irregular due to the presence of structural highs, slope failures and canyons, and is interrupted by flat areas at a mean depth of 1500 m.Seismostratigraphic analysis tools and methods were used to identify fluid escape structures and to work out a classification on the basis of their morpho-acoustic characteristics. The detailed 3D bathymetric chart was used to define the top view morphologic features and their areal distribution. With the aim to evaluate the geochemical content of fluids, we collected a 2.3 m long sediment core in correspondence of a pockmark at a depth of 414 m. Pore waters were sampled every 10 cm and analysed in relation to their conductivity (EC) and composition (δ18O, δD, Li, Na, K, Mg, F, Cl, Br, NO3, SO4).The new data show the occurrence of different types of structures with highly contrasting seismic and morphologic signatures, both dome-type and concave-upward structures. The latter have a characteristic circular shape and are known as pockmarks. Morphobathymetric, stratigraphic and structural data suggest that these structures occur along fault planes, mainly associated with diagenetic carbonates and fluid venting activity. Pockmarks could be the result of both fault and landslide structures, as they appear aligned along a straight direction and occur in proximity of the slope, and are associated with slope instabilities. The structural features are possibly associated with the recent tectonics mapped on-land as well as the widespread seismicity of the margin.Geochemical features reveal that pore water is slightly enriched in heavy isotopes with respect to Mediterranean seawater, while the distribution profiles of EC, ion concentration (Cl, SO4, Na, K, Mg, Ca), ion/Chloride ratios (Na/Cl, K/Cl, Ca/Cl, Mg/Cl and Alk/Cl) seem to indicate the existence of an external source of fluids and the occurrence of sediment-fluids interaction processes. A possible mechanism causing pore water freshening could be the destabilisation of gas hydrates.  相似文献   

6.
Located on the West Iberian margin, between Cabo Carvoeiro and Cabo da Roca, the Estremadura Spur is a trapezoidal promontory elongated in an east-west direction, extending until the Tore seamount. Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (Lourinhã Monocline). Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. The characterization of these features and the understanding of the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor.The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. It is concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary, as indicated by the buried pockmarks at different depths below the seabed. The vertical stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure.  相似文献   

7.
This study addresses the morphology of pockmarks along the western continental margin of India using multibeam bathymetry and backscatter data. Here, for the first time we have utilized the application of ArcGIS (Geographical Information System) for understanding the morphology of pockmarks from the western continental margin of India. The pockmarks observed in water depths of 145–330 m are circular, elliptical or elongated in plan-view, with an average length and width of 157 (±72) m and 83 (±19) m respectively. The average pockmark relief and perimeter are 1.9 (±0.9) m and 412 (±181) m, respectively. The pockmarks have average areas and volumes of 10 759 m2 and 15 315 m3 respectively. Spatial separation that coincides with 210 m isobath divides the pockmarks into two groups with differing distributions and morphologies. These pockmarks originated from seepages of biogenic or thermogenic gas or from pore fluids from deeper sources, migrated vertically along the faults. Besides a possible structural control, the pockmark morphologies are also affected by bottom currents and/or by submarine slumping. The average acoustic backscatter strength from pockmark centre is higher (−35 dB) than the average backscatter of the total area (−40 dB), which suggests their possible linkage to the precipitation of diagenitic minerals from biodegradation of seepage material.  相似文献   

8.
Over 25,300 seabed pockmarks were mapped from the Rosetta Channel region of the Western Nile Deep Sea Fan (NDSF) using concurrent High Resolution 2D, Chirp profiler and multibeam bathymetry data which spans the Holocene–Pleistocene period. Within the region, a pockmark field containing >13,800 pockmarks was analysed using spatial statistics to determine the distribution of pockmarks within the field. Pockmarks within the field are small (∼16 m diameter), shallow (∼0.5 m deep) circular depressions which formed within the last ∼ 6500 years. The fluid source for the field is identified as an accumulation/generation of gas beneath a hemipelagic seal c. 20–40 ms beneath the seabed. The position of the pockmarks is shown to be unrelated to the depth to the fluid source and an irregular high amplitude acoustic anomaly which is tentatively interpreted as a possible carbonate precipitate of biogenic microbial activity. Statistical spatial analysis of the field confirms the distribution of pockmarks is not random. An exclusion zone surrounding each individual pockmark is identified. The exclusion zone is a unique minimum radius around each pockmark which is not penetrated by any other pockmark. The exclusion zone works in unison with Self-Organised Criticality (SOC) in determining the spatial distribution of pockmarks within the field. The exclusion zone is interpreted as a pockmark “drainage cell”. A conceptual model for a pockmark drainage cell is proposed whereby pockmark formation dissipates a radius/area of fluid and overpressure, thereby preventing the formation of another pockmark within that cell. Consequently, pockmarks are observed to separate or produce anti-clustering tendencies within the field.  相似文献   

9.
Pockmark-like seabed features located on the Landes Plateau, Bay of Biscay, are depressions up to 1 km across and 50 m deep according to multibeam echo sounder data. Seismic (airgun and TOPAS) profiles show that each feature comprises a stack of identical features which extend down to 300 ms (twt). Three types of depressions, elongate, irregular and circular, appear as non-truncating V-shaped features in the Plio-Quaternary sediments. These features are located above the Parentis Basin where deep faults, basement ridges and diapiric bodies extend upwards across the sedimentary cover, providing ideal migration pathways for any buoyant fluids. Initial inspection suggests that these are classic pockmarks; however, the absence of reflection truncation and the absence of indications of shallow gas beneath the features indicate that they were not formed by the removal of sediment. These are “pockforms” but not “pockmarks”. This paper presents an explanation for the formation of these features, involving collapse and subsidence, sedimentary erosion, and only in some cases the erosion of seabed sediments by probable escaping fluids. These origins are mainly conducted through tectonic fluid dynamics which acted in the area up to the Late Miocene. It might be expected that these features would have been infilled by subsequent sedimentation, but their shape has been preserved because sedimentation in the area mainly comprised muds deposited from low-energy transportation (diluted gravity flows) and settling from hemipelagic suspension.  相似文献   

10.
The northern Gulf of Mexico is dominated by salt tectonics, resulting fracturing and numerous seafloor seeps and vents. Woolsey Mound, site of the Gulf of Mexico Hydrates Research Consortium's seafloor observatory, has been investigated extensively via surveys, direct sampling and seafloor instrument systems. This study presents an innovative approach to seismic data interpretation, integrating three different resolution datasets and maximizing seismic coverage of the complex natural hydrocarbon plumbing system at Woolsey Mound.3D industry seismic data reveal the presence of a salt body at in the shallow subsurface that has generated an extended network of faults, some extending from the salt body to the seafloor (master faults). Higher resolution seismic data show acoustic wipe-out zones along the master faults with expulsion features – seafloor pockmarks and craters – located immediately above them and associated, in the subsurface, with high-amplitude, negative anomalies at constant depth of 0.2 s TWTT b.s.f., interpreted as free gas. Since pockmarks and craters provide pathways for hydrocarbons to escape from depth into the water column, related sub-surface seismic anomalies may indicate free gas at the base of the gas hydrates stability zone (GHSZ). Fluid flow and gas hydrates formation are segmented laterally along faults. Gas hydrates formation and dissociation vary temporally in the vicinity of active faults, and can temporarily seal them as conduits for thermogenic fluids. Periodic migrations of gases and other fluids may perturb the GHSZ in terms of temperature and pressure, producing the observed lack of classical BSRs.  相似文献   

11.
A total of 445 pockmarks were observed on the upper continental slope of the northwest corner of the Iberian Peninsula (the Ortegal Spur area) by swath bathymetric and ultrahigh resolution seismic data. The pockmarks are U-, V- and W-shaped and have terraces or indentations in cross-section, and are dish-shaped (circular to oval) in plan view. They occur on the surface of the seabed and buried within the Plio-Quaternary and Neogene sediments. Four types of pockmarks were identified and mapped on the basis of their plan-view and cross-section morphology: regular, irregular, asymmetric and composite. The concentration of pockmarks is attributed to seepage of fluids migrating up-dip from deeper parts of the sedimentary basin. A linear high-density concentration with a NNW to N, NE and ESE trend of pockmarks is observed above inferred basement faults that do not affect the Quaternary succession. These pockmarks are thus caused by seepage of thermogenic gas and/or other pore fluids from deeper Late Cretaceous units, and their distribution may help to improve our understanding of the fluid system and migration regime in this part of the Galicia continental margin.  相似文献   

12.
The seafloor morphology and the subsurface of the continental slope of the Olbia intraslope basin located along the eastern, passive Sardinian margin (Tyrrhenian Sea) has been mapped through the interpretation of high-resolution multibeam bathymetric data, coupled with air-gun and sparker seismic profiles. Two areas, corresponding to different physiographic domains, have been recognized along the Olbia continental slope. The upper slope domain, extending from 500 to 850 m water depth, exhibits a series of conical depressions, interpreted as pockmarks that are particularly frequent in seafloor sectors coincident with buried slope channels. In one case, they are aligned along a linear gully most likely reflecting the course of one of the abandoned channels. The location of the pockmarks thus highlights the importance of the distribution of lithologies within different sedimentary bodies in the subsurface in controlling fluid migration plumbing systems. A linear train of pockmarks is, however, present also away from the buried channels being related to a basement step, linked to a blind fault. Two bathymetric highs, interpreted as possible carbonate mounds, are found in connection with some of the pockmark fields. Although the genetic linkage of the carbonate mounds with seafloor fluid venting cannot be definitively substantiated by the lack of in situ measurements, the possibility of a close relationship is here proposed. The lower slope domain, from 850 m down to the base of the slope at 1,200 m water depth is characterized by a sudden gradient increase (from 2° to 6°) that is driven by the presence of the basin master fault that separates the continental slope from the basin plain. Here, a series of km-wide headwall scars due to mass wasting processes are evident. The landslides are characterized by rotated, relatively undeformed seismic strata, which sometimes evolve upslope into shallow-seated (less than 10 m), smaller scale failures and into headless chutes. Slope gradient may act as a major controlling factor on the seafloor instability along the Olbia continental slope; however, the association of landslides with pockmarks has been recognized in several continental slopes worldwide, thus the role of over-pressured fluids in triggering sediment failure in the Olbia slope can not be discarded. In the absence of direct ground truthing, the geological processes linked to subsurface structures and their seafloor expressions have been inferred through the comparison with similar settings where the interpretation of seafloor features from multibeam data has been substantiated with seafloor sampling and geochemical data.  相似文献   

13.
This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200 m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.  相似文献   

14.
Multibeam swath bathymetric data collected in 95–120 m water depth on Australia’s North West Shelf revealed two distinct populations of sand waves: a laterally extensive, low-amplitude composite form comprising superimposed dunes and ripples, and a laterally restricted form which has unusually high bedform heights and slopes. These large subaqueous sand waves comprise bioclastic ooid/peloid sand. Significantly, evidence of seabed fluid flow was detected in association with the high-amplitude sand waves. This evidence includes seabed pockmarks approximately 2–15 m in diameter imaged with side-scan sonar, tubular and massive carbonate concretions dredged from the seabed, and potential active venting of a fluid plume from the seabed observed during an underwater camera tow. Molecular and isotopic analyses of carbonate concretions collected from within pockmarks associated with the high-amplitude sand waves indicate that the fluids from which they precipitated comprise modern seawater and are not related to thermogenic fluids or microbial gases. The fluid flow is interpreted to be driven by macrotidal currents flowing over the relatively steep slopes of the high-amplitude sand waves. Pockmarks and carbonate concretions then develop where the interstitial flows are confined and focused by subsurface ‘mounds’ in a shallow seismic reflector.  相似文献   

15.
In the late Miocene, giant ancient pockmarks, which are fairly rare globally, developed in the Qiongdongnan Basin. In this paper, to determine the sedimentary characteristics and genetic mechanism of these giant ancient pockmarks in the Yinggehai Formation of the Qiongdongnan Basin, based on high-resolution 3D seismic data and multiattribute fusion technologies, we analyzed the planar distribution and seismic facies of the ancient pockmarks and compared the characteristics of the ancient pockmar...  相似文献   

16.
In this paper, we address the irregular behaviour and geometry of the gas hydrate stability zone (HSZ) inferred from reflection seismic data in relation to heat-flow measurements. The study area lies in the hanging wall of the Posolsky fault in the Southern Baikal Basin (SBB). Side-scan sonar imagery already revealed an undulating antithetic active fault structure and several isolated active vent structures. Remarkably, these fluid discharge structures occur only where the base of the hydrate stability zone (BHSZ), as inferred from seismic reflection profiles, is fluctuating and discontinuous, independent of lake floor morphology. The correlation between the interpreted BHSZ and heat-flow data across the Malenki seep is reasonable. On a seismic profile south of the fluid escape features, the BHSZ is expressed as an oscillatory, but continuous reflection, and shows poor correlation with heat-flow measurements. In nearly all cases, measured heat-flow exceeds inferred heat-flow. Additionally, the local inferred minima are anomalously low compared to the expected background values in the SBB. These observations suggest that the present-day hydrate accumulation and its (meta-)stability are more complicated than originally suspected. The limited area of these anomalies, their amplitudes and their occurrence in the immediate vicinity of faults and fluid escape features suggest that fluid convection cells disturb local gas hydrate stability conditions.  相似文献   

17.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

18.
An analysis of 3D seismic data from the Zhongjiannan Basin in the western margin of the South China Sea (SCS) reveals seismic evidence of gas hydrates and associated gases, including pockmarks, a bottom simulating reflector (BSR), enhanced reflection (ER), reverse polarity reflection (RPR), and a dim amplitude zone (DAZ). The BSR mainly surrounds Zhongjian Island, covering an area of 350 km2 in this 3D survey area. The BSR area and pockmark area do not match each other; where there is a pockmark developed, there is no BSR. The gas hydrate layer builds upward from the base of the stability zone with a thickness of less than 100 m. A mature pockmark usually consists of an outside trough, a middle ridge, and one or more central pits, with a diameter of several kilometers and a depth of several hundreds of meters. The process of pockmark creation entails methane consumption. Dense faults in the study area efficiently transport fluid from large depths to the shallow layer, supporting the formation of gas hydrate and ultimately the pockmark.  相似文献   

19.
The Ulleung Basin, East (Japan) Sea, is well-known for the occurrence of submarine slope failures along its entire margins and associated mass-transport deposits (MTDs). Previous studies postulated that gas hydrates which broadly exist in the basin could be related with the failure process. In this study, we identified various features of slope failures on the margins, such as landslide scars, slide/slump bodies, glide planes and MTDs, from a regional multi-channel seismic dataset. Seismic indicators of gas hydrates and associated gas/fluid flow, such as the bottom-simulating reflector (BSR), seismic chimneys, pockmarks, and reflection anomalies, were re-compiled. The gas hydrate occurrence zone (GHOZ) within the slope sediments was defined from the BSR distribution. The BSR is more pronounced along the southwestern slope. Its minimal depth is about 100 m below seafloor (mbsf) at about 300 m below sea-level (mbsl). Gas/fluid flow and seepage structures were present on the seismic data as columnar acoustic-blanking zones varying in width and height from tens to hundreds of meters. They were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression/pockmark (SCD) on the seafloor. Reflection anomalies, i.e., enhanced reflections below the BSR and hyperbolic reflections which could indicate the presence of gas, together with pockmarks which are not associated with seismic chimneys, and SCDs are predominant in the western-southwestern margin, while the BSR, BSCs and SCMs are widely distributed in the southern and southwestern margins. Calculation of the present-day gas-hydrate stability zone (GHSZ) shows that the base of the GHSZ (BGHSZ) pinches out at water depths ranging between 180 and 260 mbsl. The occurrence of the uppermost landslide scars which is below about 190 mbsl is close to the range of the GHSZ pinch-out. The depths of the BSR are typically greater than the depths of the BGHSZ on the basin margins which may imply that the GHOZ is not stable. Close correlation between the spatial distribution of landslides, seismic features of free gas, gas/fluid flow and expulsion and the GHSZ may suggest that excess pore-pressure caused by gas hydrate dissociation could have had a role in slope failures.  相似文献   

20.
The Nyegga region, located at water depths of about 600–800 m on the NW European continental margin, contains more than 200 pockmarks. Recently collected TOPAS seismic profiles and EM1002 bathymetric records now provide high-resolution information on their seabed and shallow sub-seabed geological setting. The identified pockmarks are up to 15 m deep, between 30 m and 600 m across and reach a maximum area of ca. 315,000 m2. The pockmarks are sediment-empty features. They do not have any preferred direction of orientation and show large variations in their shape. The pockmarks are restricted to a <16.2 cal. ka old sediment unit. This unit comprises sandy mud and is characterised by sedimentation rates of ca. 1 mm/year. The pockmarks are localised over a thick late Plio-Pleistocene prograding sediment package and a polygonal faulted Miocene-Oligocene ooze-rich unit. The late Plio-Plistocene deposits host bottom simulating reflectors, indicative of gas hydrate-bearing sediments. Inspection of the newly collected high-resolution dataset, combined with previously analysed sediment cores and 2D multichannel seismic profiles, reveals that the Nyegga pockmark field does not show any strong relationship between seabed features, sub-seabed structures and the sedimentary setting. This suggests a more complex evolution history of the Nyegga pockmark field then previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号