首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The temporal variability of estuarine sedimentation has been investigated in the northernmost part of the Wadden Sea (Denmark), using an estuarine sedimentary sequence at Ho Havn. The sedimentary sequence appears to have been deposited within the last ∼ 2000 yr based on detailed luminescence dating of the estuarine mud, whose ages range between 225 ± 40 and 2050 ± 300 yr. The age-depth profile reveals that the sedimentation rate has varied considerably in the past. Estuarine sedimentation was very rapid ∼ 1400 yr ago; the ages over almost 1 m of sediment are indistinguishable. After this accretion rate of ∼ 9 mm a− 1, the rate dropped abruptly to ∼ 0.3 mm a− 1 some time between 1340 and 970 yr ago. This slow rate of accretion continued until ∼ 350 yr ago, when it accelerated to ∼ 1.3 mm a− 1. These abrupt changes in the accretion rate are possibly related to local sea level fluctuations, thus the period with low accretion rate most probably reflects a situation with a stable or decreasing relative sea level. The rapid deposition of ∼ 0.9 m of sediment within about one century some 1400 yr ago shows that large amounts of fine-grained sediment were available for deposition in the region at that time, and an increasing relative sea level was most probably responsible for the creation of the accommodation space for sedimentation. Recent studies on mudflats and salt marshes in the region also tend to show high accretion rates, indicating that the coastal lagoons could be less vulnerable and threatened by a future sea level rise than generally believed.  相似文献   

2.
Three time-series sediment traps were deployed in the Japan Trench at 40°26′N, 144°28′E, from October 1994 to May 1995. The depths were approximately 1, 4.2 and 6.8 km and the water depth was 7150 m. There were large mass fluxes in spring at 1 and 4.2 km depths, whereas increased fluxes appeared from 27 December 1994 to 29 January 1995, at 4.2 and 6.8 km depths. The 1994 Sanriku-Oki earthquake (Mw=7.7) occurred on 28 December 1994, at 40°27′N, 143°43′E, adjacent to the study site. Distinct increases in non-biogenic material were observed at both 4.2 and 6.8 km just after the earthquake; the material seems to have originated from the surface sediments, though differing Mn/Al of particulate materials at the two depths imply a difference in their source areas. Analysis indicates that the main part of the increased particulate fluxes at 6.8 km depth derived from the sediment on the eastern slope of the Japan Trench.  相似文献   

3.
Heat flow anomalies provide critical information in active tectonic environments. The Gulf of Cadiz and adjacent areas are affected by the plate convergence between Africa and Europe, causing widespread deformation and faulting. Active thrust faults cause lateral movement and advection of heat that produces systematic variations in surface heat flow. In December 2003 new heat flow data were collected during the research vessel Sonne cruise SO175 in the Gulf of Cadiz over two sites of recent focused research activity: (i) the Gulf of Cadiz sedimentary prism and (ii) the Marques de Pombal escarpment. Both features have also been discussed as potential source areas of the Great Lisbon earthquake and tsunami of 1755. Background heat flow at the eastern terminus of the Horseshoe abyssal plain is about 52–59 mW/m2. Over the Gulf of Cadiz prism, heat flow decreases from ∼57 mW/m2 to unusually low values of 45 mW/m2 roughly 120 km eastward. Such low values and the heat flow trend are typical for active thrusting, supporting the idea of an east-dipping thrust fault. Slip rates are 10 ± 5 mm per year, assuming that the fault dips at 2°. A fault dipping at 5°, however, would result into slip rates of 1.5–5 mm per year, suggesting that subduction has largely ceased. Based on seismic data, the Marques de Pombal fault is interpreted as part of an active fault system located ∼100 km westward of Cape San Vincente. Heat flow over the fault is affected by refraction of heat caused by the 1 km high escarpment. Thermal models suggest that the slip rate along the fault must either be small or shear stresses acting on the fault are rather high. With respect to other fault zones, however, it is reasonable to assume that the fault's slip rate is small.  相似文献   

4.
Previous GPS-based geodetic studies and onland paleoseismologic studies in Trinidad have shown that the 50-km-long, linear, onland segment of the Central Range fault zone (CRFZ) accommodates at least 60% of the total rate of right-lateral displacement (∼20 mm/yr) between the Caribbean and South American plates. 2D and 3D seismic reflection data from a 60-km-long and 30-km-wide swath of the eastern shelf of Trinidad (block 2AB) were used to map the eastern offshore extension of this potentially seismogenic and hazardous fault system and to document its deeper structure and tectonic controls on middle Miocene to recent clastic stratigraphy. Two unconformity surfaces and seafloor were mapped using 3D seismic data to generate isochron maps and to illustrate the close control of the CRFZ and associated secondary faults on small, clastic basins formed along its anastomosing strands and the east-west-striking North Darien Ridge fault zone (NDRFZ) that exhibits a down-to-the-north normal throw. Mapped surfaces include: 1) the middle Miocene angular unconformity, a prominent, regional unconformity surface separating underlying thrust-deformed rocks from a much less deformed overlying section; this regional unconformity is well studied from onland outcrops in Trinidad and in other offshore areas around Trinidad; 2) a Late Neogene angular unconformity developed locally within block 2AB that is not recognized in Trinidad; and 3) the seafloor of the eastern Trinidad shelf which exhibits linear scarps for both the CRFZ and the east-west-striking North Darien Ridge fault zone. Clastic sedimentary fill patterns identified on these isochron maps indicate a combined effect of strike-slip and reverse faulting (i.e., tectonic transpression) produced by active right-lateral shear on the CRFZ, which is consistent with the obliquity of the strike of the fault to the interplate slip vector known from GPS studies in onland Trinidad. The NDRFZ and a sub-parallel and linear family of east-west-striking faults with normal and possibly transtensional motions also contributed to the creation of accommodation space within localized, post-middle Miocene clastic depocenters south of the CRFZ.  相似文献   

5.
Drilling/coring activities onboard JOIDES Resolution for hydrate resource estimation have confirmed gas hydrate in the continental slope of Krishna-Godavari (KG) basin, Bay of Bengal and the expedition recovered fracture filled gas hydrate at the site NGHP-01-10. In this paper we analyze high resolution multi-channel seismic (MCS), high resolution sparker (HRS), bathymetry, and sub-bottom profiler data in the vicinity of site NGHP-01-10 to understand the fault system and thermal regime. We interpreted the large-scale fault system (>5 km) predominantly oriented in NNW-SSE direction near NGHP-01-10 site, which plays an important role in gas hydrate formation and its distribution. The increase in interval velocity from the baseline velocity of 1600 m/s to 1750–1800 m/s within the gas hydrate stability zone (GHSZ) is considered as a proxy for the gas hydrate occurrence, whereas the drop in interval velocity to 1400 m/s suggest the presence of free gas below the GHSZ. The analysis of interval velocity suggests that the high concentration of gas hydrate occurs close to the large-scale fault system. We conclude that the gas hydrate concentration near site NGHP-01-10, and likely in the entire KG Basin, is controlled primarily by the faults and therefore has high spatial variability.We also estimated the heat flow and geothermal gradient (GTG) in the vicinity of NGHP-01-10 site using depth and temperature of the seafloor and the BSR. We observed an abnormal GTG increase from 38 °C/km to 45 °C/km at the top of the mound, which remarkably agrees with the measured temperature gradient at the mound (NGHP-01-10) and away from the mound (NGHP-01-03). We analyze various geological scenarios such as topography, salinity, thermal non-equilibrium of BSR and fluid/gas advection along the fault system to explain the observed increase in GTG. The geophysical data along with the coring results suggest that the fluid advection along the fault system is the primary mechanism that explains the increase in GTG. The approximate advective fluid flux estimated based on the thermal measurement is of the order of few tenths of mm/yr (0.37–0.6 mm/yr).  相似文献   

6.
As the Mesozoic sediments contribute most of the oil and gas reserves of the world, we present an integrated interpretation approach using magnetotellurics (MT) and surface geochemical prospecting studies to demarcate hydrocarbon prospective Gondwana (Mesozoic) formations underneath the Deccan flood basalts of Late Cretaceous age across Narmada-Tapti rift (between Bhusawal and Barwah) in Central India. The MT interpretation shows deep (∼5 km) basement structure between southern and central part of the MT profile however, it gradually becomes shallower to either ends of the profile with a predominant basement depth reduction in the northern end compared to the southern end. The geophysical results suggest thick (2-3.5 km) Mesozoic sediments in the area characterized by deep basement structure. The geochemical analysis of the near surface soil samples indicate higher concentrations of light gaseous hydrocarbons constituents over the area marked with thick sub-basalt Mesozoic formations. Analyses of the geochemical data imply that these hydrocarbons are genetically related, generated from a thermogenic source and these samples fall in the oil-producing zone. The temperature-depth estimations in the region supports favorable temperature conditions (80-120 °C) for oil generation at basement depths.  相似文献   

7.
Sea Beam bathymetry and SeaMARC II side-scan sonar data are used to constrain the width of the zone of active faulting (plate boundary zone) to be 90 km (0.8 Ma) wide along the East Pacific Rise 8° 30N – 10° 00N. Fault scarps, identified on the basis of contoured, shaded relief and slope intensity maps of bathymetry, are measured. These scarp measurements, used in conjunction with data from a separate near-axis study, show that both inward- and outward-facing fault scarps increase in height away from the ridge axis, reaching average heights of 100 m at 0.8±0.2 Ma, 45±10 km from the ridge axis. Beyond this distance, there is no significant increase in scarp height. Earlier studies had suggested that the width of the zone of active faulting for outward-dipping faults might be significantly narrower than for inward-dipping faults. A lower crustal decoupling zone between brittle crust and strong upper mantle is predicted to exist out to 20–200 km from the ridge based on previously published lithospheric models. Such a decoupling zone may explain why outward-dipping faults continue to be active as far off-axis as inward-dipping faults. If the width of the zone of active faulting is controlled by the width of a lower crustal decoupling zone, our observations predict an 90 km wide decoupling zone in the lower oceanic crust at this location.  相似文献   

8.
Three dimensional seismic data, offshore Brunei, provide evidence for a giant landslide with a volume of 1200 km3, an area of ∼ 5300 km2 and an average thickness of ∼ 240 m. It extends for over 120 km from the Baram Canyon in ∼ 200 m water depth to the deep basin floor of the North West Borneo Trough. The landslide is a unique example of a major submarine landslide located on a steep, tectonically active margin adjacent to a large river and canyon system. The landslide is mappable using 3D seismic data, which allow detailed imaging of internal flow structures, erosional headwall and the basal sliding surface. The landslide is a complex deposit, involving a chaotic debris flow matrix, with flow structures and blocks 500 to 1000 m wide and up to 250 m thick. Imaging of the basal sliding surface reveals large striations ∼ 30-120 km long, ∼ 100-600 m wide, and ∼ 10-30 m deep that show significant amounts of basal erosion. In the landslide source area we describe fluid escape structures, gas buildups and bottom simulating reflectors, which may provide a mechanism for weakening and triggering slope failure. We also report older landslides, buried several hundred meters beneath the basin floor that indicate giant landsliding is a recurrent process in the NW Borneo Trough.  相似文献   

9.
 Bathymetry, satellite-derived gravity, and interpreted seismic reflection data across the northern Falkland/Malvinas Plateau fossil continent–ocean transform rim may record the degree of mechanical coupling across the boundary after ridge–transform intersection time. The rim comprises a broad microcontinental block in the east and a continental marginal fracture ridge 50–100 km wide elsewhere. Free-air gravity anomalies tentatively suggest that the fracture ridge is locked against oceanic elastic lithosphere both to the north (Argentine Basin) and south (Central Falkland Basin). Received: 18 January 1996 / Revision received: 25 March 1995  相似文献   

10.
The Kuqa foreland basin, adjacent to the South Tianshan Mountains, is a major hydrocarbon accumulation basin in Western China. The Kelasu structural belt is the focus for hydrocarbon exploration in the basin due to the presence of ramp-related anticline traps and a thick salt seal. The model of the Kelasu sub-salt structure is still contentious because of the structural complexity and poor seismic imaging below the salt layer. The area–depth–strain (ADS) method is applied to the southern part of the Kelasu Fault, a regional fault that cuts basement rocks. The ADS results are consistent with the seismic data, which indicate that both thin-skinned thrusting and basement-involved deformation occur within the Kelasu structure, with the Kelasu Fault acting as the boundary between the two regions of contrasting deformation. The ADS results also suggest that the depth of the lower detachment of the thin-skinned thrust belt is 9.5–10 km, which may correspond to the base of the Triassic. The Kelasu structure has undergone approximately 8.15–10.76 km of horizontal shortening in the east and 16.34 km in the west of the structure.  相似文献   

11.
Fourteen neutrally buoyant SOFAR floats at a nominal depth of 1800 m were tracked acoustically for 3.7 yr in the vicinity of the western boundary and the equator of the Atlantic Ocean. The trajectories revealed a swift, narrow, southward-flowing deep western boundary current (DWBC) extending from 7N across the equator. Two floats crossed the equator in the DWBC and went to 10S. Two other floats left the DWBC and drifted eastward in the equatorial band (3S–3N). Three floats entered the DWBC from the equatorial current system and drifted southward. These results suggest that at times the DWBC flows directly southward across the equator with a mean velocity of 8–9 cm/s averaged over long distances (∼2800 km). At other times DWBC water is diverted eastward near the equator for long periods (2–3 yr), which can reduce the mean along-boundary velocity to 1–2 cm/s. This is much less than the instantaneous along-boundary velocities in the DWBC, which are often above 25 cm/s and occasionally exceed 50 cm/s. Mean eastward-flowing jets were observed near 2N and 2S bounding a mean westward jet centered on the equator (1S–1N). The southern jet at 2S coincides with a CFC-rich plume centered south of the equator. The CFC plume is inferred to have been advected by the southern jet across the Atlantic and into the Gulf of Guinea.  相似文献   

12.
Deep-water gravity-flow sandstones are important hydrocarbon exploration and production targets in the Bohai Bay Basin, a Paleogene intra-continental rift basin in eastern China. In this paper, the seismic-sedimentology techniques are used to characterize, in plan view, the temporal and spatial evolution of a gravity-flow-channel complex of the Paleogene Shahejie Formation (Es) on the Qinan faulted-monoslope (Qinan Slope), Bohai Bay Basin. The results show that two or three gravity-flow channels, 9–12 km long and 0.5–2 km wide, were successively developed in later Es (Es1z–Es1s). The channels initially experienced westward migration and then shifted eastward. The corresponding wireline logs of the channel-fill sequences mainly present blocky-shaped or bell-like configurations, whereas their seismic profile features are characterized by strong amplitude reflections, such as U-shaped, plate-like, spindle-shaped and lenticular configurations.The syndepositional activity of three normal faults, i.e., the Nandagang Fault to the northwest, the Zhangbei Fault to the northeast and the Zhaobei Fault to the east led to gradient changes of the Qinan Slope, which have controlled the plan morphology (width, curvature, and bifurcation) of the gravity-flow channels. In the medium-late period of Es1z, triggered by intensive faulting on the three faults, the gradient of the Qinan Slope was steepened abruptly, resulting in an increase of flow velocity and erosion amplitude to underlying deposits. As a result, channels exhibiting narrow and straight configurations in plan view were formed. During the stage of early Es1z and Es1s, tectonic activity intensity was relatively low and the gradient of the Qinan Slope was gentle, so channels with great width and curvature were bifurcated and merged downstream.Comparison of the faulting amplitude of the three syndepositional faults suggests that the Nandagang and Zhaobei faults were inversely strengthened in the Es1z and Es1s. The Nandagang Fault to the west was found to be more active than the Zhaobei Fault to the east in the Es1z stage. This condition was reversed in Es1s. For that reason, the channels migrated to the west in the Es1z stage and then went back to the east during Es1s.Core analysis shows that the channel fills are mainly composed of sandy-debrites, slumps and turbidites. Among them, sandy debrites dominate deposition in terms of reservoir volume and hydrocarbon potential. These units primarily consist of sandstones and gravel-bearing sandstones, with bed thicknesses ranging from 10 to 40 m, an average porosity of 11% and a permeability of 25 mD. Being mostly encased in organic-rich dark mudstones, these sandy debrites are significant hydrocarbon exploration targets.The results of this study are not only useful to the hydrocarbon exploration and development planning for the Qinan Slope, but also helpful when considering other faulted-depressions in the Bohai Bay Basin and other intra-continent rifted basins around the world, particularly in terms of gravity-flow hydrocarbon exploration and research.  相似文献   

13.
An extensive carbonate system in the Gulf of Papua (GoP), developed in the late Oligocene–middle Miocene, was buried by huge influx of siliciclastics originated from Papua New Guinea. Major episodes of siliciclastic influx in the carbonate system are related to tectonic activity in the fold and thrust belt during the Oligocene Peninsular Orogeny, late Miocene Central Range Orogeny, and late Pliocene renewed uplift and exhumation of peninsular region. Siliciclastics did not influence the carbonate deposition during the late Oligocene–middle Miocene, since they were accumulated in the Aure Trough, proximal foreland basin protecting the carbonate system. The most significant burial of the carbonate system started during the late Miocene–early Pliocene in the result of the Central Range Orogeny. However, the largest influx was related to the renewed uplift of the Papuan Peninsula during the early late Pliocene. The shelf edge prograded ∼150 km and formed more than 80% of the modern shelf. This high siliciclastic influx was also enhanced by the “mid” Pliocene global warmth period and intensified East Asian monsoons at 3.6–2.9 Ma. Although many publications exist on carbonate–siliciclastic mixing in different depositional environments, this study helps understand the carbonate–siliciclastic interactions in space and time, especially at basinal scale, and during different intervals of the carbonate system burial by siliciclastic sediments.  相似文献   

14.
Pockmarks off Big Sur, California   总被引:1,自引:0,他引:1  
A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ∼1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique (∼45?000 yr BP), with a sedimentation rate of ∼10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface (∼100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45?000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events.  相似文献   

15.
Monitoring of altimeter microwave radiometer measurements is necessary in order to identify radiometer drifts or offsets that if uncorrected will introduce systematic errors into ocean height measurements. To examine TOPEX Microwave Radiometer (TMR) and Jason-1 Microwave Radiometer (JMR) behavior, we have used coincident wet zenith delay estimates from Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) geodetic sites near altimeter ground tracks. We derived a TMR path delay drift rate of -1.1 ± 0.1 mm/yr using GPS data for the period from 1993.0-1999.0 and -1.2 ± 0.5 mm/yr using VLBI data. Thereafter, the drift appears to have leveled off. Already after 2.3 years (82 cycles) of the Jason-1 mission, it is clear that there have been significant systematic errors in the JMR path delay measurements. From comparison with GPS wet delays, there is an offset of -5.2 ± 0.6 mm at about cycle 30 and a more abrupt offset of -11.5 ± 0.8 mm at cycle 69. If we look at the behavior of the JMR coldest brightness temperatures, we see that the offsets near cycle 30 and cycle 69 are mainly caused by corresponding offsets in the 23.8 GHz channel of -0.49 ± 0.12 K and -1.18 ± 0.13 K, although there is a small 34.0 GHz offset at cycle 69 of 0.75 ± 0.22 K. Drifts in the 18.0 and 34.0 GHz channels produce a small path delay drift of 0.3 ± 0.5 mm/yr.  相似文献   

16.
Four 70-m stations on the continental shelf offshore from the Eel River (northern California) were occupied at roughly four-month intervals between February 1995 and March 1998, and in August 1999. At each of the stations, profiles of excess 234Th were used to quantify sediment bioturbation intensity. In addition, at two of the stations macrofaunal abundance, species composition and functional groupings were quantified. During the study period, the Eel River displayed a range of hydrological conditions, with historically significant floods in January 1995 and January 1997 (return periods of 15 and 40 y, respectively), relatively low flows during the winters of 1995-1996 and 1998-1999 and an El Niño year characterized by moderate, but frequent discharges in 1997-1998. The January 1995 and 1997 floods deposited 3-7 cm of fine-grained, high porosity sediment with high C/N ratios and a terrestrial organic carbon signature at the study sites. The following general questions are addressed herein: (1) how do macrofaunal abundance, species composition and functional groupings vary over time? (2) Does the sediment deposition following the January 1997 flood constitute a major disturbance to the Eel shelf macrobenthos? (3) How does sediment bioturbation intensity vary in time/space and what are the main factors controlling this variation?The Eel shelf macrofauna is strongly dominated by subsurface-deposit feeding polychaetes, with anomalously low abundances of surface-deposit feeders and virtually no suspension feeders among the community dominants. The abundance data revealed a clear seasonal pattern, with peak density (∼4.5 × 104 m−2) in the fall and a factor of two lower density in the late winter/spring (∼2 × 104 m−2). Within this seasonal context there was little evidence for extraordinary mortality caused by the January 1997 flood, in that overall wintertime mortality and the mortality of most community dominants during a year (1995-1996) when there was no flood deposition were comparable to the mortality observed following the January 1997 flood. In contrast, the depth distribution of the macrofauna revealed a distinctive post-flood pattern, whereby a majority (55-70%) of individuals were temporarily found at depths >4 cm. This pattern suggests an active response by the resident fauna to sediment deposition, and supports the idea that the floods did not cause a widespread disturbance. Although there may not be clear evidence for short-term flood effects, the overall species composition and functional groupings do imply that the sedimentary environment (high sediment accumulation rates and abundant terrestrial organic matter) has had a long-term influence on the Eel shelf macrofauna.Model fits to ∼75 profiles of excess 234Th show that in general the data are consistent with a steady-state, biodiffusive model. The resultant mixing intensities ranged from 3 to 325 cm2 y−1, with averages (±standard deviation) of 35 ± 33, 24 ± 19, 37 ± 35, and22 ± 9 cm2 y−1 at stations C70, I70, L70, and O70, respectively. The average biodiffusivity for all stations and times was 29 ± 25 cm2 y−1 (N = 62). Due to the large amount of variability, which is consistent with other continental margin studies, it was not possible to detect significant spatial or temporal variability, although there is a hint of higher mixing intensities during the late summer - early fall, the period of maximal carbon flux to the seabed. Correlations between total macrofaunal abundance and mixing intensity are notably poor, whereas a slightly better correlation (r2 = 0.22) was obtained between the abundance of large animals and bioturbation intensity. By explicitly considering organic carbon flux, or some measure of seabed food resources, and the abundance of larger organisms it may be possible to predict bioturbation intensity better in future studies, although the pervasive small-scale variability detected on the Eel River shelf warrants in-depth theoretical and experimental consideration.  相似文献   

17.
Seismic data from a 186 km-long refraction profile in the Santa Barbara Channel have been interpreted using several velocity inversion techniques. Data were obtained during two cruises in 1978 and 1979. Seismic arrivals from fifty explosions of between 1 and 300 lbs. of TNT were recorded by two ocean bottom seismometers, four permanent ocean bottom stations (University of Southern California), and much of the United States Geological Survey/California Institute of Technology southern California seismic network. Travel-time inversion gives a V p of 6.3 km sec-1 at 7.2 km depth above 7.2 km sec-1 at 14.4 km depth at the western end of the channel. At the eastern end, solutions suggest three sediment refractors overlying V p of 6.4 km sec-1 at 7.3 km depth, above 7.0 km sec-1 at 11.6 km depth, above mantle arrivals with V p of 8.3 km sec-1 at 21.8 km depth. The velocity structure determined by these methods suggests that the channel has a sedimentary fill of from 4 to 7 km and a layer of mafic plus ultramafic rock 14 to 17 km thick. The greatest thicknesses of sediments are restricted to east of Point Conception. The velocity data also suggest that the Franciscan formation may not be present beneath the channel. Rather, the crust here may represent a thickened portion of the Coast Range ophiolite.  相似文献   

18.
Data from three bathymetric surveys by R/V Kairei using a 12-kHz multibeam echosounder and differential GPS were used to create an improved topographic model of the Challenger Deep in the southwestern part of the Mariana Trench, which is known as the deepest seafloor in the world. The strike of most of the elongated structures related to plate bending accompanied by subduction of the Pacific plate is N70°E and is not parallel to the trench axis. The bending-related structures were formed by reactivation of seafloor spreading fabric. Challenger Deep consists of three en echelon depressions along the trench axis, each of which is 6–10 km long, about 2 km wide, and deeper than 10,850 m. The eastern depression is the deepest, with a depth of 10,920 ± 5 m.  相似文献   

19.
Multichannel seismic reflection and multi-beam bathymetry data were used to study the active tectonic and syn-tectonic stratigraphic setting of the Gulf of ?zmit in the Marmara Sea (Turkey). The gulf and its near surroundings are deformed by the northern strand of the dextral North Anatolian Fault. Three connected basins of the gulf, the western (Dar?ca), central (Karamürsel) and eastern (Gölcük) basins are formed by active faults, as observed in the stacked and migrated seismic sections, as well as the bathymetry map. The main branch and its surrounding sedimentary strata are confined by normal faults to the north and south. These normal faults converge at depth towards the main fault, forming a negative flower structure in the gulf. The average maximum sedimentation rate is 0.4 mm/year according to the three most recent seismo-stratigraphic units that are located to the south of the main fault branch within the central basin. A 20° south-dipping major discontinuity along the northern shoreline of the gulf represents the top of Paleozoic basement.  相似文献   

20.
The Alaskan Stream is the westward boundary current of the North Pacific subarctic gyre. In the central region of the North Pacific, the Alaskan Stream serves as a connection between the Alaskan gyre, Western subarctic gyre and Bering Sea gyre. Its volume transport is very important in estimating the magnitude of the subarctic circulation in the North Pacific. In order to clarify its seasonal and interannual variation, we conducted observations along a north-south section at 180° during June from 1990 to 1997. Moorings were deployed from 1995 to 1997. Hydrographic casts were made at intervals of 37 km to a depth of 3000 m. Moorings were set between CTD stations, with Moor1 (Moor2) at the center (southern edge) of the Alaskan Stream. Geostrophic volume transport (referred to 3000 m) revealed large interannual variability in the Alaskan Stream. Average volume transport over the 8 years was 27.5 × 106 m3s-1 with a standard deviation of 6.5 × 106 m3s-1. Maximum transport was 41.0 × 106 m3s-1 (1997) and minimum was 21.7 × 106 m3s-1 (1995). Stable westward flows were observed at Moor1 1500 m (259°, 11.7 cm s-1) and 3000 m (240°, 3.7 cm s-1, 1996–1997 year average). The ratio of eddy to mean kinetic energy (KE/ ) was very small (<0.6) throughout the year. A relatively weak and unstable westward flow was observed at Moor2 at 3000 m depth. Conversely, the average flow direction at Moor2 5000 m was eastward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号