首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A petrographic reconnaissance survey of 23 Pleistocene deep-sea sand layers from the Hatteras Abyssal Plain and adjacent deep-sea environments was undertaken in an attempt to delineate the provenance of the Hatteras Abyssal Plain sands. Data from 18 widely spaced piston cores reveal that subarkosic sands on the Hatteras Abyssal Plain derive from widely separated, characteristically different source areas. When the diverse character of the Hatteras Abyssal Plain sands is compared to that of the Hatteras Fan and adjacent continental margin, differences in composition suggest a portion of the coarse fraction derives north of Cape Hatteras via Wilmington Canyon System or the Sohm Abyssal Plain. The presence of certain diagnostic grain assemblages (schistose metaquartz, schistose, basic, and meta-volcanic rock fragments), not found in adjacent continental margin sands, indicates the glaciated areas that feed the Hudson Canyon/Fan and Sohm Abyssal Plain are a principal source. The data substantiate that premise of previous studies, that channelization and overflow of turbidity currents through the Sohm Abyssal Gap has played a major role in sedimentation on the Hatteras Abyssal Plain.Aside from the obvious Pleistocene contributions from the adjacent Hatteras Fan, which fed southerly flowing littoral drift material into the deep ocean, a more southerly continental shelf source is also indicated. The occurrence of certain carbonate grain types (ooids and peloid-algal biomicrites) is generally restricted to the continental shelf south of Hatteras Canyon system. The presence of these diagnostic grain types on the Abyssal Plain suggests a two-step process involving northerly transport via the Gulf Stream into canyon tributaries offshore Cape Hatteras during lower sea levels and eventual redistribution by density currents into the deep ocean. This process appears to have been responsible for the emplacement of carbonate-rich sands on the Hatteras Abyssal Plain.  相似文献   

2.
A gravity core taken in the canyon of Capbreton shows a succession of sedimentary facies which can be interpreted as three superimposed Bouma sequences. The turbiditic sequences are covered by an oxidised layer which contains live benthic foraminiferal faunas indicating a reprisal of hemipelagic deposition. Activities of 234Th and 210Pb suggest that the most recent turbidite was deposited between early December 1999 and mid-January 2000. During this period, the most probable natural event able to trigger a turbidity current was the violent storm which affected the French Atlantic coast on 27 December 1999. The turbidity current could have been caused by a sediment failure due to an excess in pore pressure generated by the storm waves, an increase of the littoral drift, or the dissipation of the along-coast water bulge through the canyon. This sub-recent turbidite shows that the canyon experiences modern gravity processes, despite the lack of a direct connection with a major sediment source.  相似文献   

3.
Sedimentary, isotopic and bulk geochemical proxies measured in sediment samples of five gravity cores collected in the distal part of the Ogooue turbidite system (around 4000 m-depth) were used to develop a conceptual model to describe the accumulation of terrigenous organic matter (OM) during the last 200,000 yrs BP in the eastern part of the Gulf of Guinea. This model takes into account the influence of the different depositional processes (turbiditic vs hemipelagic sedimentation), geomorphological features and sea-level variations.Total organic carbon (TOC) and the stable organic carbon isotopes of the OM (δ13C) variability follow the highstand/lowstand (interglacial/glacial) cyclicity with a very low accumulation rate of terrigenous OM during periods of high sea-level and higher accumulation rate during period of low sea-level. A sea-level of 80–120 m below present day seems to favor the transfer of terrigenous sediments to the deep offshore environment through the turbidite system and thanks to the connection of the canyons heads with the river system presently located at the shelf edge at −120 m water depth.In this system, terrigenous OM matter delivered by the river accumulate in the sediments via two main processes. Indeed, a part of the terrigenous OM settles in combination with the finest particles forming hemipelagites, while another part, formed of very well preserved land plant debris, is transported and deposited far offshore with turbidity currents. The proportion of terrigenous OM accumulated due to turbidity currents is important as it can represent more than 70% of the carbon accumulated during sea-level lowstand. Moreover, terrigenous OM seems to preferentially accumulate in the levees and the lobes of the system notably due to the higher frequency of organic-rich turbidites.This study demonstrates that gravity flows, influenced by the sea-level variations, can significantly affect the terrigenous OM budget of the deep offshore Atlantic margins and that channel-levee complexes as well as turbidite lobes can be regarded as good sink for terrestrial organic carbon. These processes should be taken into consideration in the context of source rocks exploration but also for the estimation of the general carbon accumulation in ocean sediment.  相似文献   

4.
The Pearl River Canyon system is a typical canyon system on the northern continental slope of the South China Sea, which has significant implications for hydrocarbon exploration. Through swath bathymetry in the canyon area combined with different types of seismic data, we have studied the morphotectonics and controlling factors of the canyon by analyzing its morphology and sedimentary structure, as well as the main features of the continental slope around the canyon. Results show that the Pearl River Canyon can be separated into three segments with different orientations. The upper reach is NW-oriented with a shallowly incised course, whereas the middle and lower reaches, that are located mainly in the Baiyun Sag, have a broad U-shape and have experienced consistent deposition. Seventeen deeply-cut canyons have developed in the slope north of the Baiyun Sag, playing an important role in the sedimentary processes of the middle and lower reaches of the Pearl River Canyon. These canyons display both asymmetrical V- and U-shapes along their lengths. Numerous buried channels can be identified below the modern canyons with unidirectionally migrating stacking patterns, suggesting that the canyons have experienced a cyclic evolution with several cut and fill phases of varying magnitude. These long established canyons, rather than the upper reach of the Pearl River Canyon, are the main conduits for the transport of terrigenous materials to the lower slope and abyssal basin during lowstand stage, and have contributed to the formation of vertically stacked deep-water fans in the middle reach. Canyon morphology is interpreted as a result of erosive sediment flows. The Pearl River Canyon and the 17 canyons in the slope area north of the Baiyun Sag probably have developed since the Miocene. Cenozoic tectonics, sea level change and sediment supply jointly control the morphology and sedimentary structure. The middle and lower reaches of the Pearl River Canyon developed on the paleo-terrain of the Baiyun Sag, which has been a persistently rapid depositional environment, receiving most of the materials transported via the canyons.  相似文献   

5.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

6.
The margin of the Gulf of Cadiz is swept by the deep current formed by the Mediterranean Outflow Water (MOW) flowing from the Mediterranean to the Atlantic. On the northern margin of the Gulf (Algarve Margin, South Portugal), the MOW intensity is low and fine-grained contourite drifts are built up with an alongslope development. From new sedimentological data, this study emphasizes the presence of two types of contourite drifts separated only by a deep submarine canyon incising the slope with a north-south orientation (Portimão Canyon). High-resolution seismic and bathymetry interpretation shows that on the eastern side of the canyon, the MOW forms a thick and large detached drift (Albufeira Drift) prograding toward both north and west, as shown in seismic profiles, with a high sedimentation rate. On this side of the canyon, the MOW intensity is high enough to erode the slope forming a moat channel (Alvarez Cabral). On the western side of Portimão Canyon, the MOW energy is lower, preventing moat channel erosion. Only flat and thin drift develops (Portimão and Lagos Drifts) with slow aggradation and a low sedimentation rate. This difference in drift development is due to the presence of the canyon which generates an important change in hydrodynamic of the MOW, confirmed by temperature-density measurements showing that MOW flows down Portimão Canyon. The canyon is responsible for the deviation of the direction of the MOW as it partly catches the deep-sea current flowing westward (i.e. capture phenomenon). It creates, thus, a decrease of the flow energy, competency and capacity between the east and west sides of the canyon. Through this phenomenon of MOW deep-sea current capture, the canyon constitutes a morphologic feature generating an important change in the contourite deposition pattern.In addition to already known climatic and oceanographic influences, our results show the role of canyons on contourite drift building. This study provides new elements on autocyclic factors influencing the contourite sedimentation, which are important to consider in future sedimentary paleo-reconstruction interpretations.  相似文献   

7.
Megafaunal diversity in the deep sea shows a parabolic pattern with depth. It can be affected by factors such as low oxygen concentration, which suppresses diversity, or the presence of submarine canyons, which enhances it. Barkley Canyon, located off the west coast of British Columbia, Canada, is a submarine canyon that extends from the continental margin (200 m) into the deep ocean (2,000 m). This canyon receives drift kelp from shoreline kelp forests and contains an oxygen minimum zone (OMZ) at 500 to 1,500 m depth. Our study investigated the abundance and diversity of epibenthic megafauna over a range of depths (200–2,000 m) and oxygen concentrations (0.5–5.0 ml/L) within Barkley Canyon, as well as changes in abundance near detrital kelp. Video was collected using the remotely operated vehicle ROPOS along seven 1‐km cross‐canyon (i.e., across the axis of the canyon) transects and three 40‐m perpendicular cross‐transects over kelp. Taxonomic groups were associated with depth, temperature, and the presence of pebbles. The OMZ restricted pennatulids, and edge effects along OMZ boundaries were observed for ophiuroids. The geomorphology of the sea floor affected the distribution of taxa across the canyon, with Porifera mainly found along the walls and Echinoidea within the canyon axis. Expected richness exhibited a bimodal pattern, peaking at 300 and 2,000 m, possibly due to the combined effect of the OMZ and the submarine canyon. Echinoidea aggregated near drift kelp at 200 and 300 m. We found that faunal communities in Barkley Canyon were influenced by several confounded factors including depth, oxygen and substrate. Understanding faunal patterns is paramount with increased exploitation and a changing climate.  相似文献   

8.
Two pendulum-type inclinometers, providing accurate direct measurements of seafloor gradient from a submersible, were developed and field tested. A manipulator-held inclinometer was used in Great Abaco Canyon to measure the angle of repose of taluslike carbonate deposits on the canyon wall. A submersiblemounted inclinometer continuously measured, and a camera recorded, variations in seafloor gradient on the lower continental slope off Cape Hatteras. This area has been previously identified seismically as containing rotational slump blocks. Slump deposits were found to have slopes of up to 10° while their associated slump scarps had gradients between 30 and 50°.  相似文献   

9.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

10.
The function of a submarine conduit under typhoon conditions is examined. The study site is the Kao-ping river, shelf, and submarine canyon (KPRSC) system located off southern Taiwan on a wave-dominated microtidal coast. The head of the canyon is located approximately 1 km off the river mouth. Two comprehensive 1-month field experiments were carried out in 2000 and 2002 during the flood season of the river. Both experiments encountered typhoons that generated significant river discharge and wave resuspension events. Particle samples collected in 2000 by sediment-traps were analyzed for coarse fraction by the wet sieving method. Among the coarse fraction, foraminiferal species and their abundance were recorded as a tracer for biogenic particles of marine origin. Stable isotopes of carbon (δ13C) of organic particles of sediment-trap samples were analyzed as a tracer for particles of terrestrial origin. All the measured flow and particle concentration records were analyzed by conventional time-series analytical methods. Simultaneously observed records of suspended sediment concentration at the river mouth and the volume concentration of suspended particles near the canyon floor were compared. Instantaneous flux and cumulative transport of suspended particles near the canyon floor were estimated during the deployment period. Results show that Kao-ping Submarine Canyon is a multi-level and process-dependant two-way conduit for particles of terrestrial and marine origins. In general, terrestrial signals are stronger than the marine signals in sediment-trap samples near the head of the canyon. During typhoon events, in the early distal phase of their influence nonlithogenic and biogenic marine sources are enhanced; in the later proximal phase signals of locally generated terrestrial lithogenic sources are enhanced. An episode of momentary downcanyon flushing of suspended particles near the canyon floor is observed during one typhoon occurrence. This flushing suggests nondeposition during the typhoon at the locale of deployment despite increased input of particles to the canyon floor. It also suggests a mechanism by which turbidity currents could be triggered. Yet, this flushing phenomenon is not observed in another typhoon occurrence, suggesting it is not universal in the canyon's response to the typhoon.  相似文献   

11.
A sediment study suggests that Washington and Norfolk canyons off the Mid-Atlantic States are not inactive, but have served periodically since the Late Pleistocene as conduits of sediment originating on the adjacent shelf and upper slope. Large quantities of sand occur in the canyon heads as thin beds and laminae, and on the continental slope as mixtures of sand (to >40%), silt and clay that are extensively reworked by burrowing organisms. Sandy turbidites occur in the canyons on the rise. Basinward dispersal, from the outer shelf and uppermost slope, is recorded by heavy mineral suites and bioclastic components, primarily foraminifera of shallow marine origin, in the lower slope and upper continental rise canyon cores. The down-axis movement of material, presumably episodic, in the Holocene to recent results from offshelf spillover into canyon heads, failure on the steep walls bordering canyons on the slope, and resuspension by bottom currents.  相似文献   

12.
Basin floor fans contain some of the largest deep-water hydrocarbon accumulations discovered, however they also demonstrate extremely complex stratigraphic architecture, understanding of which is crucial for maximum recovery. Here we develop a new method, based upon palynofacies analysis, for the distinction of the different depositional environments that are commonly associated with basin floor fans. Previous studies and our sedimentological analysis allow good confidence in the discrimination of the different depositional environments of the outcropping Marnoso-Arenacea Formation fan system. One hundred and thirty-five samples were collected from mudstones in conjunction with sedimentary logging of 871 m of outcrops. Six lithofacies associations are described and interpreted to represent lobe axis, lobe fringe, fan fringe, contained interlobe, basin plain, and starved high depositional sub-environments. Palynofacies of these elements demonstrate turbidites to be rich in terrestrial organic matter, with sixteen categories of matter recognised. The abundances and proportions of particles varies between sub-environments, with lobe axis deposits containing the largest, densest particles, with a transition to ever smaller and lighter particles moving toward the basin plain. Fuzzy C-means statistical analysis was used to explore this trend. Distribution of organic matter is not random, but is dominated by hydrodynamic sorting and sequential fall-out of particles as turbidity currents passed across the basin. This allows a palynofacies classification scheme to be constructed to assist the identification of depositional environments of submarine fans, which may be combined with subsurface data to assist reservoir characterisation.  相似文献   

13.
Since the beginning of formation of Proto-Taiwan, the subducting Philippine (PH) Sea plate has moved continuously through time in the N307° direction with respect to Eurasia (EU), tearing the EU plate. The subducting EU plate includes a continental part in the north and an oceanic part in the south. The boundary B between these two domains corresponds to the eastern prolongation of the northeastern South China Sea ocean-continent transition zone. In the Huatung Basin (east of Taiwan), the Taitung Canyon is N065° oriented and is close and parallel to B. Seismic profiles show that the southern flank of the canyon corresponds to a fault with a normal component of a few tens of meters in the sediments and possible dextral shearing. Several crustal earthquakes of magnitude >%6 are located beneath the trend of the Taitung Canyon and focal mechanisms suggest that the motion is right-lateral. Thus, faulting within the sedimentary sequence beneath the Taitung Canyon is a consequence of underlying dextral strike-slip crustal motions. As the continental part of the EU slab located north of B has been recently detached, some subsequent dextral strike-slip motion might be expected within the EU slab, along the ocean-continent transition zone, which is a potential zone of weakness. We suggest that the dextral strike-slip motion along the ocean-continent boundary of the EU slab might trigger the observed dextral strike-slip motion within the overlying PH Sea crust and the associated faulting within the sediments of the Huatung Basin, beneath the Taitung Canyon. An erratum to this article is available at .  相似文献   

14.
Source rock formation influenced by river-delta system, especially in continental margin basins, is still poorly understood. This article aimed to reveal the effect of river-delta system on the formation of the source rock by taking the Baiyun Sag of the Pearl River Mouth Basin for example. Paleo-Pearl River began to develop since the Enping Formation, providing abundant organic matter beneficial for the formation of the source rocks in the Baiyun Sag. The main controlling factor of source rock formation in the Baiyun Sag is terrestrial organic matter supply rather than the paleoproductivity or redox conditions. Low Al/Ti and P/Ti ratios suggest low marine productivity, which may be associated with a large number of terrigenous detritus input, occupying about 43.04%–94.91%. There is a positive correlation between the oleanane/C30hopane ratio and the TOC value, showing that terrigenous organic matter controls the source rock formation. The size of the delta below Pearl River estuary determines the extent of terrestrial organic matter supply. Source rocks with high organic matter abundance mainly formed in delta environment, and those in neritic environment in Enping and Zhuhai Formations also have high TOC values as a result of adequate terrestrial organic matter supply.  相似文献   

15.
We investigated Oceanographer Canyon, which is on the southeastern margin of Georges Bank, during a series of fourteen dives in the “Alvin” and “Nekton Gamma” submersibles. We have integrated our observations with the results of previous geological and biological studies of Georges Bank and its submarine canyons. Fossiliferous sedimentary rocks collected from outcrops in Oceanographer Canyon indicate that the Cretaceous—Tertiary boundary is at 950 m below sea level at about 40°16′N where at least 300 m of Upper Cretaceous strata are exposed; Santonian beds are more than 100 m thick and are the oldest rocks collected from the canyon. Quaternary silty clay, deposited most probably during the late Wisconsin Glaciation, veneers the canyon walls in many places, and lithologically similar strata are present beneath the adjacent outer shelf and slope. Where exposed, the Quaternary clay is commonly burrowed by benthic organisms that cause extensive erosion of the canyon walls, especially in the depth zone (100–1300 m) inhabited by red crabs (Geryon) and/or jonah crabs (Cancer). Bioerosion is minimal on high, near-vertical cliffs of sedimentary rock, in areas of continual sediment movement, and where the sea floor is paved by gravel. A thin layer of rippled, unconsolidated silt and sand is commonly present on the canyon walls and in the axis; ripple orientation is most commonly transverse to the canyon axis and slip-faces point downcanyon. Shelf sediments are transported from Georges Bank over the eastern rim and into Oceanographer Canyon by the southwest drift and storm currents; tidal currents and internal waves move the sediment downcanyon along the walls and axis. Large erratic boulders and gravel pavements on the eastern rim are ice-rafted glacial debris of probable late Wisconsinan age; modern submarine currents prevent burial of the gravel deposits. The dominant canyon megafauna segregates naturally into three faunal depth zones (133–299 m; 300–1099 m; 1100–1860 m) that correlate with similar zones previously established for the continental slope epibenthos. Faunal diversity is highest on gravelly sea floors at shallow and middle depths. The benthic fauna and the fishes derive both food and shelter by burrowing into the sea floor. In contrast to the nearby outer shelf and upper slope, Oceanographer Canyon has not been extensively exploited by the fishing industry, and the canyon ecosystem probably is relatively unaltered.  相似文献   

16.
Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin.The integrated analysis shows that the canyon fill consists of four 3rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3rd-order sequence boundaries). Within each 3rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5.The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs.Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.  相似文献   

17.
Studies of the Mesozoic and Cenozoic sequence crossed by the Barreiro-4 borehole provide an improved understanding of the organic matter deposited in the Lower Tagus sub-basin (Lusitanian Basin, Portugal) and the implications for the potential source rock and depositional environment. This study focused on 43 samples (Middle Jurassic to Neogene) that were subjected to palynofacies and organic geochemistry analyses (Total Organic Carbon, Rock-Eval pyrolysis and molecular biomarker analysis). The palynofacies data indicate that the sequence contains mainly phytoclasts (non-opaque phytoclasts). However, the Middle Jurassic samples are dominated by Amorphous Organic Matter (AOM). Continental and/or marine palynomorphs are present in all the samples. The Cretaceous samples are characterized by small amounts of kerogen that have high contents of solid bitumen. The Total Organic Carbon (TOC) content is generally less than 1 wt.%. The Rock-Eval S1 and S2 parameters vary from 0.01 to 3.50 mgHC/g rock and 0.15 to 34.03 mgHC/g rock, respectively, with the highest values corresponding to the Cretaceous samples. The hydrogen index (HI) and oxygen index (OI) values range from 35 to 552 mgHC/g TOC and 4 to 180 mgHC/g TOC, respectively. The Tmax values range from 416 to 437 °C. The biomarker analysis showed that n-alkanes with 15–30 carbon atoms are present and usually have a unimodal distribution with a predominance of low to medium molecular weight compounds. The CPI values range between 0.63 and 3.65, and the pristane/phytane ratios vary between 0.48 and 1.64, indicating alternation of oxic–anoxic conditions along the sequence. The distribution of terpanes shows small amounts of tricyclic and tetracyclic terpanes in most of the samples (except for some Cretaceous samples) and a predominance of pentacyclic terpanes. The amount of 17α (H),22,29,30-trisnorhopane (Tm) usually exceeds the amount of 18α (H),22,29,30-trinorneohopane (Ts). The 20S/(20S + 20R) and αββ/(ααα + αββ) ratios of the C29 steranes generally have values below the range of equilibrium, indicating an immature stage of the OM.  相似文献   

18.
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonate-siliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using high-resolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the well-developed shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the inter-reef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.  相似文献   

19.
Seismic reflection profiling in the South San Clemente Basin and the southern portion of the San Diego Trough has revealed at least six sedimentary units exhibiting varying stages of deformation. Four of the units are interpreted to be marine turbidites supplied by adjacent submarine canyons. Sediments comprising the Descanso Plain and correlative material within the South San Clemente Basin are attributed to a southerly source (Banda Canyon), while the more recent Quaternary turbidites from Coronado Canyon filled the southern San Diego Trough and then spilled over into South San Clemente Basin. The relatively high but intermittent rates of sedimentation, together with shifting sources and areas of deposition, have resulted in sedimentary units that were emplaced in comparatively short episodes but which were subjected to relatively continuous tectonic activity. Consequently, the sedimentary layers of each unit appear uniformly affected by deformation which increases in successively older units.  相似文献   

20.
Sedimentary processes and structures across the continental rise in the western Weddell Sea have been investigated using sediment acoustic and multichannel seismic data, integrated with multibeam depth sounding and core investigations. The results show that a network of channels with associated along-channel ridges covers the upper continental slope. The seismic profiles reveal that the channels initially developed as erosive turbidite channels with associated levees on their northern side due to Coriolis force. Later they were partly or fully infilled, probably as a result of decreasing turbidite activity. Now the larger ones exist as erosive turbidite channels of reduced size, whereas the smaller ones are non-erosive channels, their shape being maintained by contour current activity. Drift bodies only developed where slumps caused a distinctive break in slope inclination on the upper continental rise, which served to initiate the growth of a drift body fed by contour currents or by the combined action of turbidites and contourites. The history of sedimentation can be reconstructed tentatively by correlation of seismo-stratigraphic units with the stages of evolution of the drifts on the western side of the Antarctic Peninsula. Three stages can be distinguished in the western Weddell Sea after a pre-drift stage, which is delimited by an erosional unconformity at the top: (1) a growth stage, dominated by turbidites, with occasional occurrence of slumps during its initial phase; (2) during a maintenance stage turbiditiy-current intensity (and presumably sedimentation rate also) decreased, probably as a result of the ice masses retreating from the shelf edge, and sedimentation became increasingly dominated by contour current activity; and (3) a phase of sheeted-sequence formation. A southward decrease in sediment thickness shows that the Larsen Ice Shelf plays an important role in sediment delivery to the western Weddell Sea. This study shows that the western Weddell Sea has some characteristics in common with the southern as well as the northwestern Weddell Sea: contour currents off the Larsen Ice Shelf have been present for a long time, probably since the late Miocene, but during times of high sediment input from the shelves as a result of advancing ice masses a channel-levee system developed and dominated over the contour-current transport of sediment. At times of relatively low sediment input the contour-current transport dominated, leading to the formation of drift deposits on the upper continental rise. Seaward of areas without shelf ice masses the continental rise mainly shows a rough topography with small channels and underdeveloped levees. The results demonstrate that sediment supply is an important, maybe the controlling factor of drift development on the Antarctic continental rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号