首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The paleogeographic evolution of Campos Basin, a major oil province of Brazil, during the deposition of its giant turbidite reservoirs, was reinterpreted based on the integration of quantitative sandstone petrography and structural analysis of regional 3D seismic data. The major detrital compositional trends indicate that the geodynamic evolution of the continental margin, rather than global eustatic sea-level fluctuations, has exerted the main control on sand supply to the deepwater systems. This control was imposed by the interaction of three geodynamic processes: (i) escarpment retreat of the coastal mountain ridges, (ii) mantle plume-related dynamic uplift and magmatic activity, and (iii) tectonic reactivation of major basement fault-zones. The pattern of distribution of compositional and textural parameters within the turbidite sequences indicated that the sand supply to deepwater was also constrained by high-frequency stratigraphic processes of the climate Milankovitch band. This new approach to the controls on the formation of the sand-rich, deepwater systems in Campos Basin has a key importance for the generation of realistic models for the exploration of new turbidite reservoirs and for the optimized development of producing turbidite oilfields in such a world-class hydrocarbon province. The proposed integrated methodology can help to unravel the controls on the deposition of deepwater sand-rich, deepwater reservoirs in other divergent margin settings.  相似文献   

2.
3.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

4.
The Cumuruxatiba basin is located in the central portion of the eastern Brazilian margin surrounded by Cenozoic magmatic highs that belong to the Abrolhos Magmatic Complex. This basin was formed by rifting, in the Neocomian followed by thermal subsidence during late Cretaceous like other basins along the Eastern Brazilian margin. In the Cenozoic, the Abrolhos magmatism took place as sills and dykes intruded the sedimentary section, primarily during the Paleogene. In that time, there was a strong NS contractional deformation in the basin represented by folds related to reverse faults coeval with Abrolhos magmatism activity. The structural restorations of regional 2D seismic sections revealed that most of the contractional deformation was concentrated at the beginning of the Cenozoic with maximum peak at the Eocene (up to 33% of total shortening and rate of 6 km/Ma). The Post-Eocene period was marked by a decrease in the strain rate that continues to the present day (around 4 km/Ma to less than 1). 3D structural modelling exhibited a major, well-developed E–W to NE–SW fold belt that accommodated most of the contractional Cenozoic deformation between Royal Charlotte and Sulphur Minerva magmatic highs. Volcanic eruptions and magmatic flows from the Abrolhos complex resulted in differential overburden on edge of the basin, acting as a trigger for halokinesis and the subsequent formation of fault-related folds. In general, such structures were developed close to adjacent magmatic highs, commonly exhibiting vergence towards the centre of the basin. Some magmatic features formed coeval with Cenozoic syn-deformation sediments clearly indicate that Abrolhos magmatism activity and contractional deformation development were associated. The study of the thickness variation of the syn-deformation section in relation to fault-related folds on deformation maps and maximum strain diagrams revealed that most folds were activated and re-activated several times during the Cenozoic without a systematic kinematic pattern. This lack of systematic deformation might be related to the variation of the magmatic pulse activity of adjacent magmatic highs resulting in a complex interference pattern of Cenozoic folds. These structural interpretations of the timing of fault-related folds that are potential Cenozoic traps in the Cumuruxatiba basin play a fundamental role in petroleum systems and exploration of low-risk hydrocarbon prospects.  相似文献   

5.
成像测井包含了大量的地质信息,可以更加直观和准确地显示出地下油藏的地质特征,能够对构造(构造倾角、断层)和沉积(层理面、岩性面、古水流方向)等方面进行分析和应用。而且,成像测井是研究裂缝性储层的最有效和直观的手段,能够满足评价裂缝油气藏所需要的包括孔洞、裂缝发育程度及其有效性和面孔率等参数。此外,成像测井还有助于确定现今地应力方向及判断井眼的稳定性,为钻采工程方面提供科学决策的重要依据。总之,成像测井与其他专业密切配合,能够解决更多的地质油藏问题,从而为勘探开发提供更多科学有效的手段。  相似文献   

6.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

7.
Three small turbidite systems (Almeria, Sacratif, and Guadiaro), each tens of kilometres long, are developed in the complex morpho-structural setting of the northern Alboran Sea and have similar primary architectural elements (canyons, channel-levee systems, lobes). However, comparison reveals differences in the axial gradients of their canyons, depth/physiographic location, morphological framework, and lateral and longitudinal sedimentary shifts of turbidite deposition. The depositional architecture and sedimentary evolution from late Pliocene to Quaternary seems to be conditioned by number of submarine feeding sources (canyons), sea-level fluctuations and local tectonic (e.g. margin/canyon-channel gradients, faults). We group the Alboran turbidite systems into two models: mud/sand-rich submarine point-source and mud/sand-rich multiple submarine source ramp.  相似文献   

8.
Tectonics is extremely important to the depositional record preserved in continental sedimentary basins, affecting both the formation of sequence boundaries and the filling characters of these sequences. This comprehensive analysis of Paleogene depositional patterns and the sequence compositional types in the Banqiao sub-basin of the Bohai Basin, Eastern China, shows that episodic rifting and differential activity on major faults have resulted in the formation of various types of transfer zones and structural slope-break zones, both of which played significant roles in the formation and distribution of sequence types and depositional systems. Transfer zones controlled the positions of sediment source areas, entry points for sediment into the basin and, as a result, the development of depositional systems. Structural slope-break zones are paleotopographic features where there is a sharp basinward increase in depositional slope that is controlled by fault geometry. The location of structural slope-break zones influenced the distribution of depositional systems and sand bodies. Areas where the structural slope-break zone overlapped with transfer zones were sites for major drainage systems and the preferred positions of delta fans and turbidite fans. The areas controlled by the transfer zone and the structural slope-break zone with the distribution of sand bodies are the favorable place for the prospecting of subtle stratigraphic traps in the Banqiao sub-basin.  相似文献   

9.
This paper presents a new structural-stratigraphic approach to constrain the reservoir potential of the middle Miocene turbidite systems within the Monagas Fold-Thrust Belt (MFTB) and Maturín Sub-Basin (MSB) of eastern Venezuela. In the frontal anticline structures of the MFTB (Amarilis Area) light hydrocarbons have been produced from these turbidite systems which were deposited in a foreland basin with a complex tectonostratigraphic evolution.In order to predict the location of other analogous reservoirs we used the structural model presented in Part I (Parra et al., 2010) to developed a palaeo-topographic reconstruction at early-middle Miocene. We have then used this reconstruction to constrain the palaeogeography of the middle Miocene foredeep where the turbidites were deposited. The area considered has 5000 km2.By middle Miocene four regions are identified: 1) The southern basin margin dipped 1.5-2.5° north; 2) The foredeep axis had a southwest-northeast orientation. Within the foredeep the proto-structures of the MFTB created submerged highs that control the distribution of sediments; 3) The northern basin margin dipped 3-4° south; the coastline was controlled by the Pirital thrust sheet; 4) The main source of sediments was located towards the northwest on the Pirital thrust sheet and Serranía del Interior.Variations in shortening across the strike of the Pirital thrust were accommodated by a lateral ramp which controlled the location of a valley that acted as the main sediment pathway for the sediments that fed the turbidite system. This relationship between the thrust belt geomorphology and the location of turbidite sediment within the foredeep must be considered in order to assess the distribution of the Miocene turbidite reservoirs.  相似文献   

10.
国内外深水区油气勘探新进展   总被引:15,自引:0,他引:15  
深水区油气资源丰富,近年来深水油气勘探不断升温。在全球6大洲18个深水盆地中已发现约580亿桶油当量的油气资源。目前,巴西、美国墨西哥湾的深水油气田已经投入生产,而且产量不断增加,西非地区也已进入开发阶段,西北欧、地中海以及亚太地区的许多国家也都在积极开展深水油气勘探或开发。海上油气钻探不断向深水区和超深水区发展,探井数目也在继续增加,投资力度不断加强,储量每年也有很大的增长。深水油气勘探成功率平均达到30%,其中,西非的勘探成功率最高。深水区烃源岩生烃潜力较好,最好的烃源岩主要分布于侏罗系、白垩系和第三系的地层中,储层以浊积岩储层为主,盖层通常比较发育,大多数圈闭都与地层因素有关。我国南海北部陆坡深水区盆地属准被动边缘盆地,从烃源岩、储层、盖层、圈闭到运聚条件等都具备了形成大型油气田的基本地质条件,具有丰富的资源前景。  相似文献   

11.
The reservoir architecture of methane hydrate (MH) bearing turbidite channels in the eastern Nankai Trough, offshore Japan is evaluated using a combination of 3-D seismic and well data. On the 3-D seismic section, the MH-bearing turbidite channels correspond to complex patterns of strong seismic reflectors, which show the 3-D internal architecture of the channel complex. A seismic-sequence stratigraphic analysis reveals that the channel complex can be roughly classified into three different stages of depositional sequence (upper, middle, and lower). Each depositional sequence results in a different depositional system that primarily controls the reservoir architecture of the turbidite channels. To construct a 3-D facies model, the stacking patterns of the turbidite channels are interpreted, and the reservoir heterogeneities of MH-bearing sediments are discussed. The identified channels at the upper sequence around the β1 well exhibit low-sinuosity channels consisting of various channel widths that range from tens to several hundreds of meters. Paleo-current flow directions of the turbidite channels are typically oriented along the north-northeast-to-south-southwest direction. High-amplitude patterns were identified above the channels along the north-to-south and north-northeast-to-south-southeast directions. These roughly coincide with the paleo-current flow of the turbidite channels. An interval velocity using high-density velocity analysis shows that velocity anomalies (>2000 m/s) are found on the northeastern side of the turbidite channels. The depositional stage of the northeastern side of the turbidite channels exhibits slightly older sediment stages than the depositional stages of the remaining channels. Hence, the velocity anomalies of the northeastern side of the channels are related to the different stages of sediment supply, and this may lead to the different reservoir architectures of the turbidite channels.  相似文献   

12.
Full-coverage multibeam bathymetric maps of the southern section of the Juan de Fuca Plate, also known as the Gorda Plate, are presented. The bathymetric maps represent the compilation of multibeam surveys conducted by the National Oceanic and Atmospheric Administration during the last 20 yrs, and illustrate the complex tectonic, volcanic, and geomorphologic features as well as the intense deformation occurring within this region. The bathymetric data have revealed several major, previously unmapped midplate faults. A series of gently curving faults are apparent in the Gorda Plate, with numerous faults offsetting the Gorda Plate seafloor. The multibeam surveys have also provided a detailed view of the intense deformation occurring within the Gorda Plate. A preliminary deformation model estimated from basement structure is discussed, where the southern part of the plate (south of ∼42°30′ N) seems to be deforming through a series of left-lateral strike-slip faults, while the northern section appears to be moving passively with the rest of the Juan de Fuca Plate. The bathymetry also demonstrates the Mendocino and Eel Canyons are prominent morphologic features in the northern California margin. These canyons are active depositional features with a large sediment fan present at the mouths of both the Mendocino and Eel canyons. The depositional lobes of these fan(s) are evident in the bathymetry, as are the turbidite channels that have deposited sediment along the fans over time. The Trinidad Canyon is readily evident in the margin morphology as well, with a large (∼10 km) plunge pool formed at the mouth of the canyon as it enters the Gorda Plate sediments. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods.  相似文献   

14.
The Rhone Fan is a large Plio-Pleistocene turbidite deposit in the western Mediterranean Sea. The fan is fed from the broad Rhone River delta, but only one canyon, the Petit-Rhone, has fed most of the major turbidite depositional sequences that have been mapped. Slumping of sediment from intercanyon areas on the delta slope also has provided much sediment for the fan. The lack of Recent turbidite deposition on the fan suggests that turbidite sedimentation dominates during glacial low stands of sea level, building major leveed valley sequences, while surficial slumping of the valley levee deposits and pelagic sedimentation seem to mark high stands of sea level during interglacial periods. Margin setting represents fan and/or source area  相似文献   

15.
琼东南盆地深水区东区凹陷带,即松南—宝岛—长昌凹陷,位于琼东南盆地中央坳陷东端。在大量地震资料解释的基础上,对38条主要断层进行了详细分析。获得以下认识:(1)琼东南盆地深水区东区凹陷带平面上表现为近EW向展布的平行四边形,剖面结构表现为自西向东由半地堑—不对称的地堑—半地堑有规律变化。(2)琼东南盆地深水区东区凹陷带断裂系统可划分控制凹陷边界断层、控制洼陷沉积中心断层和调节性断层3类。(3)琼东南盆地深水区东区凹陷带古近纪时期受到太平洋板块俯冲和南海海盆扩张的双重影响,构造应力场发生NW—SE→SN转变。构造演化可划分为3个阶段:~32Ma,应力场以区域性NW—SE向伸展为主,断裂系统以NE—SW向为主,控制凹陷边界;32~26Ma,以南海海盆近SN向拉张应力场为主,断裂系统以NWW—SEE向为主,断层活动控制凹陷沉积中心;26~Ma,区域性伸展与南海海盆扩张应力均逐渐减弱,NE—SW向和NWW—SEE向断裂继承性发育。(4)琼东南盆地深水区东区凹陷带内部主要断层在渐新统崖城组和陵水组沉积时期活动速率快,地形高差大、沉积水体深、沉积厚度大,控制了崖城组和陵水组的大规模沉积,有利于烃源岩的发育。圈闭以受断层控制的断鼻和断块为主,长昌主洼凹中隆起带发育2个最为理想的构造圈闭。  相似文献   

16.
The study presents the methodology used by the French Geological Survey (BRGM) for the building, reprocessing and interpretation of selected regional seismic lines in the Paris intracratonic basin (France): the 14 constructed E-W and N-S regional transects represent a total of 2,516 km length, and are based on the merge of 240 seismic single profiles recorded by petroleum operators between 1971 and 1995. The regional lines have been selected to cross the main oil fields of the Paris Basin, as well as high potential areas for oil exploration. A first difficulty was to recover the raw data necessary to build-up the regional transects. The signal reprocessing, harmonization and merge of the single seismic lines, constituent of the regional transects, are then described; these operations represent the cornerstone of the study. We put the emphasis on the primary static corrections, as the targeted structures are commonly spatially associated with large seismic velocity variations in the upper Cretaceous chalk and Tertiary sedimentary cover.The interpreted regional transects definitely give complementary information to the existing studies, which generally lack seismic (and therefore structural) data: we give an overview of the main structural and geometrical features of the Paris Basin: inversion structures, major unconformities, as well as Permo-Carboniferous basins. We also describe the structural pattern, and show the close relationships between the faults geometry, the faults density, and the geological evolution of the Paris Basin: we distinguish (1) few large-scale polyphase faults, with a Variscan origin, representing the first order structural frame of the Paris Basin; (2) monophase normal faults, with strike-slip features, representing the subsurface prolongation of Cenozoic grabens cropping out in the neighbourhood; (3) deep normal faults, sealed by the base Calcareous Dogger sequence, related to the Permo-Liassic extensional tectonic regime. This large-scale view of the Paris Basin has highlighted several potential exploration targets.  相似文献   

17.
Bed thickness distribution within turbidite systems is related to basin geometry and to magnitude and duration of depositional events. Cumulative distribution of turbidite bed thicknesses is often interpreted in terms of a power law. Alternatively, these distributions have been described by a lognormal mixture model. Changes in the power-law exponent can be related to the rheological properties of the gravity-driven flows and to the geometry of the basin.  相似文献   

18.
Mass transport deposits and geological features related to fluid flow such as gas chimneys, mud diapirs and volcanos, pockmarks and gas hydrates are pervasive on the canyon dominated northern slope of the Pearl River Mouth basin of the South China Sea. These deposits and structures are linked to serious geohazards and are considered risk factors for seabed installations. Based on high resolution three dimensional seismic surveys, seismic characteristics, distributions and origins of these features are analyzed. A distribution map is presented and geometrical parameters and spatial distribution patterns are summarized. Results show that various groups of the mapped features are closely tied to local or regional tectonism and sedimentary processes. Mass transport complexes are classified as slides near the shelf break, initially deformed slumps on the flanks of canyons and highly deformed slumps on the lower slope downslope of the mouth of canyons. We propose them to be preconditioned by pore pressure changes related to sea level fluctuations, steep topography, and fluid and fault activities. Gas chimneys are mainly located in the vicinity of gas reservoirs, while bottom-simulating reflectors are observed within the gas chimney regions, suggesting gas chimneys serve as conduits for thermogenic gas. Mud diapirs/volcanos and pockmarks are observed in small numbers and the formation of pockmarks is related to underlying gas chimneys and faults. This study aims at reducing risks for deep-water engineering on the northern slope of South China Sea.  相似文献   

19.
The Pelotas Basin of Brazil and Uruguay represents a frontier basin with under-explored hydrocarbon potential. Although oil and gas accumulations have yet to be identified, only 21 exploratory wells have been drilled in an area of more than 330,000 km2, 20 of which are located in the Brazilian portion of the basin. A detailed study of the petroleum system of offshore Uruguay has strong potential to contribute to a better characterization of the capacity of the basin to generate and accumulate hydrocarbons. Three stages have previously been recognized during the evolution of Pelotas basin: (1) a prerift phase which preserved Paleozoic and Mesozoic units of the Paraná Basin; (2) an Early Cretaceous volcano-sedimentary synrift phase; and (3) a Cretaceous to Cenozoic postrift phase deposited during the passive margin stage. In this study, we use sequence stratigraphy methodology to interpret 2D multichannel seismic sections of the southern segment of the Pelotas Basin in the Uruguayan Atlantic margin. This analysis allows us to identify depositional sequences, systems tracts and the distribution of the main elements of the potential petroleum systems. Following our analysis, we propose six speculative petroleum systems (SPS) in the Pelotas Basin. The first SPS is related to the prerift phase and is represented by a Lower Permian restricted marine source rock and reservoirs related to Permian to Upper Jurassic aeolian and fluvial sandstones. The second SPS corresponds to the synrift phase and is constituted by a Barremian lacustrine source rock with reservoirs of alluvial/fluvial sandstones of the same age. The other four proposed SPS are associated with the postrift phase, represented by marine source rocks related to Aptian-Albian, Cenomanian-Turonian and Paleocene transgressions, all of which are identified in the region and interpreted in seismic lines from Uruguay. These postrift SPS have predominantly siliciclastic reservoirs represented by Early Cretaceous aeolian sandstones and Cretaceous to Cenozoic deltaic sandstones and turbidites.  相似文献   

20.
为了揭示高邮凹陷南断阶许庄—竹墩地区复杂断裂系统的成因、演化与油气成藏的关系,通过对不整合面地层剥蚀量计算、构造演化剖面分析等方法,系统地总结了许庄—竹墩地区断层的发育演化规律。吴堡运动和三垛运动时期是断裂活动最强烈的时期,许庄—竹墩地区的地层受到较强的剥蚀作用。本区主要断层的发育顺序依次为真①断层、纪③断层、真②’断层和真③断层,同一断层在不同的地质时期和平面上的不同位置,发育强度有明显的差异性。断层的活动一方面形成了一系列的断块圈闭,另一方面是油气垂向运移的主要通道,因此在本区形成了一系列的断块圈闭油藏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号