首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Coho salmon (Oncorhynchus kisutch) are a vital component in the southeast Alaska marine ecosystem and are an important regional fishery resource; consequently, understanding mechanisms affecting their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997–2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of adult coho salmon in the region. However, using stepwise regression, we found that variation in adult coho salmon harvest was largely explained by indices of juvenile pink salmon (Oncorhynchus gorbuscha) abundance (67%) and zooplankton abundance (24%). To determine if high juvenile pink salmon abundance indicates favorable “bottom-up” lower trophic level environmental conditions for juvenile coho salmon, we plotted abundance of juvenile pink salmon against growth and condition of juvenile coho salmon. No change in growth or condition of juvenile coho salmon was observed in relation to the abundance index for juvenile pink salmon. Therefore, we hypothesize that coho salmon year-class strength in southeast Alaska is influenced by a “top-down” predator control mechanism that results from more abundant juvenile pink salmon, which serve as a predator buffer during early marine residency.  相似文献   

3.
郭琳  刘娜  王国建  修鹏 《海洋与湖沼》2016,47(3):491-501
本文利用三维数值模型(ROMS-Co Si NE)分析了整个加利福尼亚流系水平流场的季节性演变过程,研究了美国加州中部海域流场垂直结构的季节性变化特征,并探讨了其动力学机制。研究发现:(1)数值模型能够较为准确的模拟流场的季节性变化,与浮标观测数据以及前人的研究结果符合良好;(2)从表层到200m,加利福尼亚潜流向高纬度扩张,近岸上升流急流则向高纬度撤退,加州南部海域的中尺度涡更显著;(3)在加州中部海域,近岸急流的最大值(约15cm/s)发生在夏季,位于近岸的表层海域;加利福尼亚潜流最大值(约4cm/s)发生于冬季,出现在离岸100km的125m处;加利福尼亚流在春季达到全年最大值(约5cm/s),流轴位于离岸(400—600km)的表层海水。加利福尼亚流系的流场具有显著的季节性变化,研究进一步表明这主要受地转关系调控。  相似文献   

4.
The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (~50°N) to off Baja California, Mexico (~15–25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.  相似文献   

5.
6.
A Large-Scale Seasonal Modeling Study of the California Current System   总被引:1,自引:0,他引:1  
A high-resolution, multi-level, primitive equation ocean model has been used to investigate the combined role of seasonal wind forcing, seasonal thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the entire California Current System (CCS) region, from Baja to the Washington-Canada border. Additional objectives are to further characterize the meandering jet south of Cape Blanco and the seasonal variability off Baja. Model results show the following: All of the major currents of the CCS (i.e., the California Current, the California Undercurrent, the Davidson Current, the Southern California Countercurrent, and the Southern California Eddy) as well as filaments, meanders and eddies are generated. The results are consistent with the generation of eddies from instabilities of the southward current and northward undercurrent via barotropic and baroclinic instability processes. The meandering southward jet, which divides coastally-influenced water from water of offshore origin, is a continuous feature in the CCS, and covers an alongshore distance of over 2000 km from south of Cape Blanco to Baja. Off Baja, the southward jet strengthens (weakens) during spring and summer (fall and winter). The area off southern Baja is a highly dynamic environment for meanders, filaments, and eddies, while the region off Point Eugenia, which represents the largest coastline perturbation along the Baja peninsula, is shown to be a persistent cyclonic eddy generation region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The distribution of 376 salmon caught at sea between 41 °S and 46 °S up to 48 km off the east coast of the South Island between 1925 and 1978 is discussed. The distribution appears to be related to strong currents in Cook and Foveaux Straits, and to the Southland Current off the east coast of the South Island. Samples from the sea at Moeraki Peninsula had a higher incidence of stream‐reared fish and a lower mean fork length than samples from the Waitaki or Rakaia Rivers at spawning.  相似文献   

8.
A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d−1, shelf habitat=0.806 g d−1, offshore habitat=0.820 g d−1, and nearshore habitat=0.703 g d−1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.  相似文献   

9.
Coastal upwelling in the California Current system has been the subject of large scale studies off California and Baja California, and of small scale studies off Oregon. Recent studies of the winds along the entire coast from 25°N to 50°N indicate that there are significant along-shore variations in the strength of coastal upwelling, which are reflected in the observed temperature distribution. Active upwelling appears to be restricted to a narrow coastal band (about 10–25 km wide) along the entire coast, but the region influenced by coastal upwelling may be much wider. Intensive observations of the upwelling zone during summer off Oregon show the presence of a southward coastal jet at the surface, a mean vertical shear, a poleward undercurrent along the bottom, and persistently sloping isopycnals over the continental shelf; most of the upwelling there occurs during relatively short periods (several days long) of upwelling-favorable winds. During the upwelling season off Oregon, the offshore Ekman transport is carried by the surface Ekman layer, and the onshore return flow occurs through a quasi-geostrophic interior. It is not known whether the structure and dynamics observed off Oregon are typical of the upwelling zone along the entire coast, though some of the same features have been observed off Baja California. Current and future research will eventually show whether the Oregon results are also applicable in the region of persistently strong upwelling-favorable winds off northern California, and in the region of complex bathymetry off central and southern California.  相似文献   

10.
The seasonal variability of sea surface height (SSH) and currents are defined by analysis of altimeter data in the NE Pacific Ocean over the region from Central America to the Alaska Gyre. The results help to clarify questions about the timing of seasonal maxima in the boundary currents. As explained below, the long-term temporal mean of the SSH values must be removed at each spatial point to remove the temporally invariant (and large) signal caused by the marine geoid. We refer to the resulting SSH values, which contain all of the temporal variations, as the ‘residual’ SSH. Our main findings are:
1. The maximum surface velocities around the boundaries of the cyclonic Alaska Gyre (the Alaska Current and the Alaska Stream) occur in winter, at the same time that the equatorward California Current is weakest or reversed (forming the poleward Davidson Current); the maximum surface velocities in the California Current occur in summer. These seasonal maxima are coincident with the large-scale atmospheric wind forcing over each region.
2. Most of the seasonal variability occurs as strong residuals in alongshore surface currents around the boundaries of the NE Pacific basin, directly connecting the boundaries of the subpolar gyre, the subtropical gyre and the Equatorial Current System.
3. Seasonal variability in the surface velocities of the eastward North Pacific Current (West Wind Drift) is weak in comparison to seasonal changes in the surface currents along the boundaries.
4. There is an initial appearance next to the coast and offshore migration of seasonal highs and lows in SSH, alongshore velocity and eddy kinetic energy (EKE) in the Alaska Gyre, similar to the previously-described seasonal offshore migration in the California Current.
5. The seasonal development of high SSH and poleward current residuals next to the coast appear first off Central America and mainland Mexico in May–June, prior to their appearance in the southern part of the California Current in July–August and their eventual spread around the entire basin in November–December. Similarly, low SSH and equatorward transport residuals appear first off Central America and Mexico in January–February before spreading farther north in spring and summer.
6. The maximum values of EKE occur when each of the boundary currents are maximum.

Article Outline

1. Introduction and background
2. Data and methods
2.1. Altimeter and tide gauge data
2.2. Atmospheric forcing—sea level pressure
2.3. Statistical gridding
3. Results
4. Summary and discussion
4.1. Alaska Gyre
4.2. Connections around the boundaries of the subarctic and subtropical gyres
4.3. Connections to the North Pacific Current
4.4. Offshore ‘propagation’ of the seasonal height and transport signals
4.5. Connections to the equatorial current systems along the boundaries
Acknowledgements
References

1. Introduction and background

This is the first of a two-part analysis of temporal variability of the NE Pacific Ocean’s surface circulation, as measured by satellite altimeters. Here we examine the seasonal variability. In Part 2 (Strub & James, 2002) we analyze the non-seasonal anomalies of the surface circulation over the 1993–1998 period, during which the 1997–1998 El Niño creates the largest signal. Formation of the seasonal cycles discussed here is the first step in creating the non-seasonal anomalies. The seasonal cycles themselves, however, provide new information on the response of the NE Pacific to strong seasonal forcing, on scales not previously addressed. This analysis quantifies the degree of connection, on seasonal time scales, between the boundary currents in the eastern subarctic and subtropical gyres, as well as the connection between the boundaries and the interior NE Pacific. It further shows a connection to the equatorial current system.Numerous papers describe aspects of the seasonal cycles for certain parameters in subregions of our larger domain. Chapters in Robinson and Brink (1998) review some of the past results from the coastal ocean in the regions between the Equator and the Alaska Gyre ( Badan; Hickey and Royer). Fig. 1 presents the climatological surface dynamic height field (relative to 500 m) in the NE Pacific, calculated from the long-term mean climatological temperature and salinity data of Levitus and Gelfeld (1992). The 500 m reference level is used to concentrate on the surface flow seen by altimeters. Although this climatology is overly smooth, it shows the major currents in the area. The broad, eastward North Pacific Current (also called the West Wind Drift) splits into the counterclockwise Alaska Gyre and the equatorward California Current. South of 20°N in summer, the California Current turns westward and flows into the North Equatorial Current, while in winter–spring, part of it continues along the Mexican mainland before turning westward ( Badan; Fiedler and Fiedler). The long-term climatology shows both paths. The North Equatorial Countercurrent (NECC) flows eastward between 5° –10°N to approximately 120°W, but is only weakly seen in the annual climatology from there to the cyclonic flow around the Costa Rica Dome near 8°N, 92°W. The NECC is a shallow current (found in the upper 200 m) and might appear more strongly if a shallower reference were used, but it is also seasonally intermittent. When the Intertropical Convergence Zone (ITCZ) is in its northern location near 10°N (summer), surface divergences and upwelling create a zonal trough in surface height, driving the NECC along the southern side of the trough. When the ITCZ moves south in winter, the NECC weakens or reverses.  相似文献   

11.
Circulation and multiple-scale variability in the Southern California Bight   总被引:1,自引:0,他引:1  
The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent (i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).  相似文献   

12.
The information on the transitional areas between the temperate and tropical domains at the southern extent of the California Current System is reviewed and described, particularly searching for the relative isolation or interchange between the western coast of the Baja California peninsula and the Gulf of California, as well as mechanisms that permit the existence of sizeable stocks of California sardine. Biological Action Centers that have high productivity throughout the year, as opposed to the rest of the coastal area, are found in both the western coast of the peninsula at the Sebastián Vizcaíno—Punta Eugenia region and in the Ballenas Channel inside the gulf; these features support large biomasses of sardine throughout the full year and serve as long term refuges during adverse periods. The role of the Sebastián Vizcaino sardine stock as the primary group for expansion is examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We examined monthly time-series (1950 to 1999) of sea surface temperature (SST) anomalies in 47 quadrants (2° × 2°) along the Pacific coast of North America. Correlation, clustering and principal components analyses were applied to identify the spatial structure in coastal SST. The resulting modes and the individual series were investigated using spectral analysis to identify the most significant time-scales of variability, and the propagation of the main signals was explored by computing the wavenumber-frequency spectrum of each spatial mode. Results showed that coastal SST variability in the northeast Pacific conformed to three main geographical modes. A tropical mode extends from the equator to about the entrance to the Gulf of California. This mode appears related to two low frequency components of the El Niño-Southern Oscillation of about 3 and 5 years. The SST anomaly related to these signals propagates poleward, seemingly at low speeds (≈0.08 m s?1). A temperate (or transitional) mode, which includes the coastal areas along the California Current System, also shows the 5-year signal plus a decadal-scale component (periods between 10–17 years). Finally, a subarctic mode includes the coastal areas along the Gulf of Alaska and is dominated by the interdecadal variability that is characterized by the Pacific Decadal Oscillation.  相似文献   

14.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

15.
This article considers corporate power in the fishing industry of southeast Alaska and Puget Sound, Washington State, USA, as experienced by direct marketing salmon gillnet fishermen. Tracing the evolution of a small family-based fish business, this paper examines survival strategies of independent fishermen in a context of concentrated corporate power. Topics addressed include corporate domination of the fishing industry, “niche” alternatives to the commodity system, alliance with the farmers’ market movement, obstacles to direct sales and the critical role of family participation.  相似文献   

16.
Genetic stock identification studies have been widely applied to Pacific salmon species to estimate stock composition of complex mixed-stock fisheries. In a September-October 2004 survey, 739 chum salmon (Oncorhynchus keta) specimens were collected from 23 stations in the western Bering Sea. We determined the genetic stock composition of immature chum salmon based on the previous mitochondria DNA baseline. Each regional estimate was computed based on the conditional maximum likelihood method using 1,000 bootstrap resampling and then pooled to the major regional groups: Korea - Japan - Primorie (KJP) / Russia (RU) / Northwest Alaska (NWA) / Alaska Peninsula - Southcentral Alaska - Southeast Alaska - British Columbia - Washington (ONA). The stock composition of immature chum salmon in the western Bering Sea was a mix of 0.424 KJP, 0.421 RU, 0.116 NWA, and 0.039 ONA stocks. During the study period, the contribution of Asian chum salmon stocks gradually changed from RU to KJP stock. In addition, North American populations from NWA and ONA were small but present near the vicinity of the Russian coast and the Commander Islands, suggesting that the study areas in the western Bering Sea were an important migration route for Pacific chum salmon originating both from Asia and North America during the months of September and October. These results make it possible to better understand the chum salmon stock composition of the mixed-stock fisheries in the western Bering Sea and the stock-specific distribution pattern of chum salmon on the high-seas.  相似文献   

17.
Using a year-long moored array of current meters and well-sampled synoptic sections, we define the variability and mean structure and transport of the Agulhas current. Nineteen current meter records indicate that time scales for the temporal variability in the alongshore and offshore velocities are 10.2 and 5.4 days, respectively. Good vertical correlation exists between the alongshore or onshore velocity fluctuations, excluding the Agulhas Undercurrent. The lateral scale for the thermocline Agulhas current is about 60 km and the onshore velocity correlations are positive throughout the Agulhas Current system. Mean velocities from the array determine that the offshore edge of the Agulhas Current lies at 203 km and the penetration depth is 2200 m offshore of the Undercurrent. Hence, daily averaged velocity sections, determined by interpolation and extrapolation of current meter locations, for a 267-day period, from the surface to 2400 m depth and from the coast out to 203 km offshore encompass the main features of the Agulhas Current system. The Agulhas current is generally found close to the continental slope, within 31 km of the coast for 211 of 267 days. There are only five days when the core of the current is found offshore at 150 km. Total transport is always poleward, varying from −121 to −9 Sv, with maximum transport occurring when the core is 62 km from the coast. Average total transport for the 267 day period is −69.7 Sv; the standard deviation in daily transport values is 21.5 Sv; and the mean transport has an estimated standard error of 4.3 Sv. The Agulhas Undercurrent, which hugs the continental slope below the zero velocity isotach, has an average equatorward transport of 4.2 Sv, standard deviation of 2.9 Sv and an estimated standard error of 0.4 Sv. Transports from the moored array are in reasonable agreement with transport results from synoptic sections. Based on time series measurements at about 30° latitude in each ocean basin, the Agulhas Current is the largest western boundary current in the world ocean.  相似文献   

18.
Neoliberal policies of effort limitation and privatization have reduced commercial salmon and other fishing opportunities available to the coastal, predominantly Alaska Native, villages of southern Alaska. However, there are a variety of circumstances, including the manner in which the current commercial fishery is prosecuted, that lead to surpluses of unharvested salmon, and potentially other species, available in certain areas. This paper will define the concept of “foregone harvests”, discuss the environmental and managerial conditions that lead to “foregone harvests” and describe the possibilities such conditions create for the development of small-scale, local and community-based fisheries. Case studies of possible Huna Tlingit (Hoonah) and Kaigani Haida (Hydaburg) salmon fisheries will be presented. Alternative arrangements of salmon fisheries and institutions in southeast Alaska are presented through case studies of the villages of Yakutat and Metlakatla. These examples demonstrate how such fisheries could be built on local and traditional knowledge, as well as currently used subsistence technologies resulting in new economic opportunities compatible with local cultural patterns and interests and buttressing local identities and commitments.  相似文献   

19.
Krill (crustaceans of the family Euphausiacea) comprise an important prey field for vast array of fish, birds, and marine mammals in the California Current and other large marine ecosystems globally. In this study, we test the hypothesis that mesoscale spatial organization of krill is related to oceanographic conditions associated with coastal upwelling. To test this, we compiled a climatology of krill distributions based on hydroacoustic surveys off California in May–June each year between 2000 and 2009 (missing 2007). Approximately 53,000 km of ocean habitat was sampled, resulting in a comprehensive geo-spatial data set from the Southern California Bight to Cape Mendocino. We determined the location and characteristics of eight definite and two probable krill “hotspots” of abundance. Directional-dependence analysis revealed that krill hotspots were oriented in a northwest–southeast (135°) direction, corresponding to the anisotropy of the 200–2000 m isobath. Krill hotspots were disassociated (inversely correlated) with three upwelling centers, Point Arena, Point Sur, and Point Conception, suggesting that krill may avoid locations of strong offshore transport or aggregate downstream from these locations. While current fisheries management considers the entire coast out to the 2000 m isobath critical habitat for krill in this ecosystem, we establish here smaller scale structuring of this critical mid-trophic level prey resource. Identifying mesoscale krill hotspots and their oceanographic determinants is significant as these smaller ecosystem divisions may warrant protection to ensure key ecosystem functions (i.e., trophic transfer) and resilience. Furthermore, delineating and quantifying krill hotspots may be important for conservation of krill-predators in this system.  相似文献   

20.
We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976–1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976–1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号