首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X-ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 R(?) above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.  相似文献   

2.
We present a theory of filament eruption before the impulsive phase of solar flares. We show that the upward motion of the magnetic X-point tracing the filament eruption begins several minutes before the impulsive phase of the flare, where the explosive magnetic reconnection starts at the X-point magnetic field configuration located under the filament. No change occurs in the character of the motion of the X-point during the onset of the explosive magnetic reconnection. The upward speed of the X-point is about 110 km s-1 at the onset of the impulsive phase. We give an important condition leading to filament eruptions, which relate to the state of the current sheet under the filament, where the magnetic energy can be released.  相似文献   

3.
Every two-ribbon flare observed during the Skylab period produced an observable coronal transient, provided the flare occurred close enough to the limb. The model presented here treats these two events as a combined process. Transients that occur without flares are believed to involve magnetic fields that are too weak to produce significant chromospheric emission. Adopting the hypothesis that the rising flare loop systems observed during two-ribbon flares are exhibiting magnetic reconnection, a model of a coronal transient is proposed which incorporates this reconnection process as the driving force. When two oppositely directed field lines reconnect a lower loop is created rooted to the solar surface (the flare loop) and an upper disconnected loop is produced which is free to rise. The magnetic flux of these upper loops is proposed as the driver for the transient. The force is produced by the increase in magnetic pressure under the filament and transient.A quantitative model is developed which treats the transient configuration in terms of four distinct parts- the transient itself with its magnetic field and material, the region just below the transient but above the filament, the filament with its magnetic field, and the reconnected flux beneath the filament. Two cases are considered - one in which all the prominence material rises with the transient and one in which the material is allowed to fall out of the transient. The rate of rise of the neutral line during the reconnection process is taken from the observations of the rising X-ray flare loop system during the 29 July, 1973 flare. The MHD equations for the system are reduced to four non-linear ordinary coupled differential equations which are solved using parameters believed to be realistic for solar conditions. The calculated velocity profiles, widths, etc., agree quite well with the observed properties of coronal transients as seen in white light. Since major flares are usually associated with a filament eruption about 10–15 min before the flare and since this model associates the transient with the filament eruption, we suspect that the transient is actually initiated some time before the actual flare itself.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

5.
Martin  Sara F. 《Solar physics》1998,182(1):107-137
Observational conditions for the formation and maintenance of filaments are reviewed since 1989 in the light of recent findings on their structure, chirality, inferred magnetic topology, and mass flows. Recent observations confirm the necessary conditions previously cited: (1) their location at a boundary between opposite-polarity magnetic fields (2) a system of overlying coronal loops, (3) a magnetically-defined channel beneath, (4) the convergence of the opposite-polarity network magnetic fields towards their common boundary within the channel and (5) cancellation of magnetic flux at the common polarity boundary. Evidence is put forth for three additional conditions associated with fully developed filaments: (A) field-aligned mass flows parallel with their fine structure (B) a multi-polar background source of small-scale magnetic fields necessary for the formation of the filament barbs and (C) a handedness property known as chirality which requires them to be either of two types, dextral or sinistral. One-to-one relationships have been established between the chirality of filaments and the chirality of their filament channels and overlying coronal arcades. These findings reinforce earlier evidence that every filament magnetic field is separate from the magnetic field of the overlying arcade but both are parts of a larger magnetic field system. The larger system has at least quadrupolar footprints in the photosphere and includes the filament channel and subphotospheric magnetic fields, This ‘systems’ view of filaments and their environment enables new perspectives on why arcades and channels are invariable conditions for their existence. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005026814076  相似文献   

6.
J. Y. Ding  Y. Q. Hu  J. X. Wang 《Solar physics》2006,235(1-2):223-234
A major solar active event called Bastille Day Event occurred in AR 9077 on July 14, 2000. Simultaneous occurrence of a filament eruption, a flare and a coronal mass ejection was observed in this event. Previous analyses of this event show that before the event, there existed an activation and eruption of a huge trans-equatorial filament, which might play a crucial role in triggering the Bastille Day event. This implies that independent flux systems are closely related to and affect each other, which has encouraged us to investigate the catastrophic behavior of a multiple coronal flux rope system with the use of a 2.5-D time-dependent MHD model. A force-free field that contains three separate coronal flux ropes is taken to be the initial state. Starting from this state, we increase either the annular or the axial flux of a certain flux rope to examine the catastrophic behavior of the system in two regimes, the ideal MHD regime and the resistive MHD regime. It is found that a catastrophe occurs if the flux exceeds a certain critical value, or the magnetic energy of the system exceeds a certain threshold: the rope of interest breaks away from the base and escapes to infinity, leaving a current sheet below. Moreover, the destiny of the remainder flux ropes relies on whether reconnection takes place across the current sheet. In the ideal MHD regime, i.e., in the absence of reconnection, these ropes remain to be attached to the base in equilibrium, whereas in the resistive MHD regime they abruptly erupt upward during reconnection and escape to infinity. Reconnection causes the field lines to close back to the base and thus changes the background field outside the attached flux ropes in such a way that the constraint on these ropes is substantially relaxed and the corresponding catastrophic energy threshold is reduced accordingly, leading to a catastrophic eruption of these ropes. Since magnetic reconnection is generally inevitable when a current sheet forms and develops through an eruption of one flux rope, the eruption of this flux rope must lead to an eruption of the others. This provides an example to demonstrate the interaction between several independent magnetic flux systems in different regions, as implied by the Bastille Day event, and may serve as a possible mechanism for sympathetic events occurring on the Sun.  相似文献   

7.
Litvinenko  Yuri E. 《Solar physics》2000,196(2):369-375
Speeds of vertical flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a magnetostatic solution describing a balance between the Lorentz force, gravity, and gas pressure in a barb. This approach explains why some of the flows are neither aligned with the magnetic field nor controlled by gravity. Both the observed upflows and the magnetic field dips in barbs are likely to be caused by photospheric magnetic reconnection.  相似文献   

8.
We report observations of the formation of two filaments?–?one active and one quiescent, and their subsequent interactions prior to eruption. The active region filament appeared on 17 May 2007, followed by the quiescent filament about 24 hours later. In the 26 hour interval preceding the eruption, which occurred at around 12:50 UT on 19 May 2007, we see the two filaments attempting to merge and filament material is repeatedly heated suggesting magnetic reconnection. The filament structure is observed to become increasingly dynamic preceding the eruption with two small hard X-ray sources seen close to the active part of the filament at around 01:38 UT on 19 May 2007 during one of the activity episodes. The final eruption on 19 May at about 12:51 UT involves a complex CME structure, a flare and a coronal wave. A magnetic cloud is observed near Earth by the STEREO-B and WIND spacecraft about 2.7 days later. Here we describe the behaviour of the two filaments in the period prior to the eruption and assess the nature of their dynamic interactions.  相似文献   

9.
By using Hα, He I 10830, EUV and soft X-ray (SXR) data, we examined a filament eruption that occurred on a quiet-sun region near the center of the solar disk on 2006 January 12, which disturbed a sigmoid overlying the filament channel observed by the GOES-12 SXR Imager (SXI), and led to the eruption of the sigmoid. The event was associated with a partial halo coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO), and resulted in the formation of two flare-like ribbons, post-eruption coronal loops, and two transient coronal holes (TCHs), but there were no significantly recorded GOES or Hα flares corresponding to the eruption. The two TCHs were dominated by opposite magnetic polarities and were located on the two ends of the eruptive sigmoid. They showed similar locations and shapes in He Ⅰ 10830, EUV and SXR observations. During the early eruption phase, brightenings first appeared on the locations of the two subsequent TCHs, which could be clearly identified on He Ⅰ 10830, EUV and SXR images. This eruption could be explained by the magnetic flux rope model, and the two TCHs were likely to be the feet of the flux rope.  相似文献   

10.
We present new observations of the interactions of two close, but distinct, Hα filaments and their successive eruptions on 5 November 1998. The magnetic fields of the filaments are both of the sinistral type. The interactions between the two filaments were initiated mainly by an active filament of one of them. Before the filament eruptions, two dark plasma ejections and chromospheric brightenings were observed. They indicate that possible magnetic reconnection had occurred between the two filaments. During the first filament eruption, salient dark mass motions transferring from the left erupting filament into the right one were observed. The right filament erupted 40 minutes later. This second filament eruption may have been the result of a loss of stability owing to the sudden mass injection from the left filament. Based on the Hα observations, we have created a sketch for understanding the interactions between two filaments and accompanying activities. The traditional theory of filament merger requires that the filaments share the same filament channel and that the reconnection occurs between the two heads, as simulated by DeVore, Antiochos, and Aulanier (Astrophys. J. 629, 1122, 2005; 646, 1349, 2006). Our interpretation is that the external bodily magnetic reconnection between flux ropes of the same chirality is another possible way for two filament bodies to coalesce. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

11.
Two possible limiting scenarios are proposed for the production of a coronal mass ejection. In the first the magnetic field around a prominence evolves until it loses equilibrium and erupts, which drives reconnection below the prominence and an eruption of the overlying magnetic arcade. In the second a large-scale magnetic arcade evolves until it loses equilibrium and erupts, thereby causing a prominence to erupt. In general it is likely to be the non-equilibrium of the coupled system which creates the eruption. Furthermore, large quiescent prominences are expected to be centred within the magnetic bubble of a coronal mass ejection whereas when active-region prominences erupt they are likely to be located initially to one side of the bubble.A model is set up for the eruption of a magnetically coupled prominence and coronal mass ejection. This represents a development of the Anzer and Pneuman (1982) model by overcoming two limitations of it, namely that: it is not globally stable initially and so one wonders how it can be set up in a stable way before the eruption; it has reconnection driving the CME whereas recent observations suggest that the reverse may be happening. In our model we assume that magnetic reconnection below the prominence is driven by the eruption and the driver is magnetic non-equilibrium in the coupled prominence-mass ejection system. The prominence is modelled as a twisted flux tube and the mass ejection as an overlying void and magnetic bubble. Two different models of the prominence are considered. In one a globally stable equilibrium becomes unstable when a threshold magnetic flux below the prominence is exceeded and, in the other, equilibrium ceases to exist. In both cases, the prominence and mass-ejection accelerate upwards before reaching constant velocities in a manner that is consistent with observations. It is found that the greater the reconnection that is driven by the eruption, the higher is the final speed.  相似文献   

12.
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceas-ing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilib-rium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on re- cent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.  相似文献   

13.
On 2012 July 11, two solar filaments were observed in the northeast of the solar disk and their eruptions due to the interaction between them are studied by using the data from the Solar Dynamics Observatory (SDO), Solar TErrestrial RElations Observatory (STEREO) and Global Oscillation Network Group (GONG). The eastern filament (F1) first erupted toward the northeast. During the eruption of F1, some plasma from F1 fell down and was injected to the North-East part of another filament (F2), and some plasma of F1 fell down to the northern region close to F2 and caused the plasma to brighten. Meanwhile, the North-East part of F2 first started to be active and rise, but did not erupt finally. Then the South-West part of F2 erupted successfully. Therefore, the F2’s eruption is a partial filament eruption. Two associated CMEs related to the eruptions were observed by STEREO/COR1. We find two possible reasons that lead to the instability and the eruption of F2. One main reason is that the magnetic loops overlying the two filaments were partially opened by the eruptive F1 and resulted in the instability of F2. The other is that the downflows from F1 might break the stability of F2.  相似文献   

14.
C. Zhu  D. Alexander  X. Sun  A. Daou 《Solar physics》2014,289(12):4533-4543
We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.  相似文献   

15.
The observed interrelationship between coronal transients and eruptive prominences is used as the basis for a theoretical MHD model of these events. The model begins with an equilibrium configuration consisting of a coronal loop or arcade with a filament lying underneath with its axis oriented perpendicular to the overlying field. The lifting of the filament from the solar surface produces an increase in magnetic pressure under the helmet which drives it outward. This increased pressure is associated with the internal field of the filament as well as the field beneath it. The underlying field could be that which produced the filament eruption or, alternatively, reconnected field lines formed by the inward collapse of the legs of the transient towards the neutral line beneath the rising prominence. We do not attempt to explain the filament eruption which may be due to internal forces in the prominence or, alternatively, from forces imposed from beneath as would be produced by emerging flux. In the latter case, the filament is passive and merely acts as a tracer for the more fundamental underlying process.It is shown that the outward force per unit mass produced by the driving magnetic field and the inward restoring forces in the overlying field due to magnetic tension and gravity all decrease with distance at the same rate - namely, as the inverse square of the distance from the solar center. Hence, the ratio of net outward to inward force is independent of radial distance from the Sun. A stability analysis shows that this situation is one of neutral stability.A mathematical model of this physical process is described in which the MHD equations in simplified form, neglecting gas pressure forces, are solved in time for the velocity, width, density, and magnetic field strength of the transient. The solutions show that the velocity increases sharply close to the Sun but quickly approaches a constant value. The width increases linearly with radial distance. Both of these results are in agreement with observations. An examination of the forces exerted on the legs of the transient shows that their motion should be horizontally inward.On leave from the High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colo., U.S.A.  相似文献   

16.
In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.  相似文献   

17.
Researchers have reported i) correlations of coronal mass ejection (CME) speeds and the total photospheric magnetic flux swept out by flare ribbons in flare-associated eruptive events, and, separately, ii) correlations of CME speeds and more rapid decay, with height, of magnetic fields in potential-field coronal models above eruption sites. Here, we compare the roles of both ribbon fluxes and the decay rates of overlying fields in a set of 16 eruptive events. We confirm previous results that higher CME speeds are associated with both higher ribbon fluxes and more rapidly decaying overlying fields. We find the association with ribbon fluxes to be weaker than a previous report, but stronger than the dependence on the decay rate of overlying fields. Since the photospheric ribbon flux is thought to approximate the amount of coronal magnetic flux reconnected during the event, the correlation of speeds with ribbon fluxes suggests that reconnection plays some role in accelerating CMEs. One possibility is that reconnected fields that wrap around the rising ejection produce an increased outward hoop force, thereby increasing CME acceleration. The correlation of CME speeds with more rapidly decaying overlying fields might be caused by greater downward magnetic tension in stronger overlying fields, which could act as a source of drag on rising ejections.  相似文献   

18.
We present and interpret observations of the preflare phase of the eruptive flare of 15 November, 1991 in NOAA AR 6919. New flux emerged in this region, indicated by arch filaments in Hα and increasing vertical flux in vector magnetograms. With increasing frequency before the eruption, transient dark Hα fibrils were observed that crossed Hα bright plage and the magnetic inversion line to extend from the region of flux emergence to the filament, whose eruption was associated with the flare. These crossing fibrils were dynamic, and were often associated with sites of propagating torsional motion. These sites propagated from the region of flux emergence into the filament flux system. We interpret these morphological and dynamic features in terms of relaxation after magnetic reconnection episodes which create longer field lines within the filament flux system, as envisioned in the tether cutting model, and transfer twist to it, as well. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005086108043  相似文献   

19.
1 INTRODUCTION Filaments are cool, dense material suspended in the hot, tenuous corona. It is widely accepted that the global magnetic field surrounding the filaments plays a key role in their formation, structure and stability (Tandberg-Hanssen1995). Fil…  相似文献   

20.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号