首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear self-excited oscillations of the envelopes of low-massive highly luminous stars are described. The parameters for these models wereM=0.8M ,M bol=–5.5, –5.84 mag,T eff=4500, 5000, 5500 K. The oscillations have been found to consist of the standing wave pulsation near the envelope bottom and running waves in outer layers. The ratio of the standing wave frequency s to the average frequency of the running waves r increases with the stellar luminosity: s / r =1.7 whenM bol=–5.5 mag and s / r =2.4 whenM bol=–5.84 mag. The frequency of oscillations near the photosphere is found to be in close agreement with the critical frequency for running waves. Mass loss from these stars is caused by shocks. It has been shown that agreement between FG Sge's period change observed during the last decade and the period-luminosity relation for double shell stars takes place when FG Sge's luminosity isM bol=–5.96 mag.  相似文献   

2.
We show that the overall densityg() of asymptotic acoustic frequencies of a star obeys a Weyl lawg() D–1, whereD is the dimensionality of the oscillating stellar configuration. For realistic stars with a finite non-zero surface sound speed,D is equal to the actual dimensionality of the star,D=3. For formal models with a vanishing sound velocity at the surface, heuristic arguments lead to a dimensionality parameterD=4.5. The empirical frequencies of Eddington's standard model are found to be consistent with the latter distribution, with reasonable agreement already occurring in the low-frequency range > i 2× fundamental radial mode. We argue that real stars obey this 3.5-power law in some finite frequency interval i << f , f being a very high frequency critically depending on the surface sound velocity, while the full asymptotic law, withD=3, holds for > f .  相似文献   

3.
Observation of the adiabatic behaviour of energetic particle pitch-angle distributions in the magnetosphere (Lyons, 1977, and others) in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centred at 90° in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies < m =A/(A+1), whereA is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocityA h and cold plasma densityn c . Particles around pitch-angles 90° are identified as generating electromagnetic cyclotron waves near the marginally stable frequency m . It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.  相似文献   

4.
Electrostatic waves with > c in a plasma with temperature anisotropy and loss-cone are considered. An analytical asymptotic analysis is made for waves propagating nearly perpendicular to the magnetic field and having wave-length small compared with the Larmor radius. Numerical computations are done for carried out waves with arbitrary direction of propagation. The frequency range of instability, growth damping rates, and dispersion curves have been found. The results can be used for the interpretation of magnetospheric experiments.  相似文献   

5.
The equations for the variation of the osculating elements of a satellite moving in an axi-symmetric gravitational field are integrated to yield the complete first-order perturbations for the elements of the orbit. The expressions obtained include the effects produced by the second to eighth spherical harmonics. The orbital elements are presented in the most general form of summations by means of Hansen coefficients. Due to their general forms it is a simple matter to estimate the perturbations of any higher harmonic by simply increasing the index of summation. Finally, this paper gives the respective general expressions for the secular perturbations of the orbital elements. The formulae presented should be useful for the reductions of Earth-satellite observations and geopotential studies based on them.List of Symbols semi-major axis - C jk n (, ) cosine functions of and - e eccentricity of the orbit - f acceleration vector of perturbing force - f sin2t - i inclination of the orbit - J n coefficients in the potential expansion - M mean anomaly - n mean motion - p semi-latus rectum of the orbit - R, S, andW components of the perturbing acceleration - r radius-vector of satellite - r magnitude ofr - S jk n (, ) sine functions of and - T time of perigee passage - u argument of latitude - U gravitational potential - true anomaly - V perturbing potential - G(M++m) (gravitational constant times the sum of the masses of Earth and satellite) - n,k coefficients ofR component of disturbing acceleration (funtions off) - n,k coefficients ofS andW components of disturbing acceleration (functions off) - mean anomaly at timet=0 - X 0 n,m zero-order Hansen coefficients - argument of perigee - right ascension of the ascending node  相似文献   

6.
The stability of triangular libration points, when the bigger primary is a source of radiation and the smaller primary is an oblate spheroid. has been investigated in the resonance cases 1 = 22 and 1 = 32. The motion is unstable for all the values of parameters q and A when 1 = 22 and the motion is unstable and stable depending upon the values of the parameters q and A when 1 = 32. Here q is the radiation parameter and A is the oblateness parameter.  相似文献   

7.
On the ground of the proper wave representation the general theory is developed of radiative transfer in a homogeneous plasma with the strong magnetic field ( B /1). The linear and nonlinear equations are derived which generalize the corresponding equations of scalar radiative transfer theory in isotropic media. The solutions of some problems are given for the cases when the magnetic field is perpendicular to the surface: diffuse reflection of radiation from a semiinfinite medium, provided the sources are placed far from the surface (Milne's problem) and have constant intensity, increase linearly or quadratically with the optical depths, or decrease exponentially from the surface.  相似文献   

8.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

9.
We semi-quantitatively calculate the distribution of energy in frequency and angle emitted from a sheet of charges that are moving out relativistically along dipolar magnetic field lines originating near the magnetic polar caps of a rotating neutron star. The angular distribution is conical with the angle of maximum intensity varying with frequency as –1/4 for c 2 c /(R M 2), whereRM is the initial angular radius of the charge sheet at the surface of the star of radiusR. At higher frequencies the width of the angular cone remains constant. The radiation is linearly polarized with the polarization vector in the plane of the line of sight and the magnetic axis. A sheet of uniform charge density and finite thickness has a frequency spectrum that varies from –3/2 to –4 for c and c , respectively. These features are in good general agreement with the observed characteristics of the intensity, pulse shape, and frequency spectrum of the radio pulses from pulsars.Operated by Associated Universities, Inc., under contract with the National Science Foundation.  相似文献   

10.
This paper is devoted to Force-Free Electromagnetic Oscillations in a constant magnetic field. A correction is made in the derivation of the basic equation. The paper confirms the predicted spectrum of frequencies, namely n = o (n + 1)1/2;n = 0, 1, 2, .... In addition it is suggested that hybrid frequency n = ( n 2 + H 2 )1/2 should be found in observational data.  相似文献   

11.
The recent discovery of localised intense magnetic fields in the solar photosphere is one of the major surprises of the past few years. Here we consider the theoretical nature of small amplitude motions in such an intense magnetic flux tube, within which the field strength may reach 2 kG. We give a systematic derivation of the governing expansion equations for a vertical, slender tube, taking into account the dependence upon height of the buoyancy, compressibility and magnetic forces. Several special cases (e.g., the isothermal atmosphere) are considered as well as a more realistic, non-isothermal, solar atmosphere. The expansion procedure is shown to give good results in the special case of a uniform basic-state (in which gravity is negligible) and for which a more exact treatment is possible.The form of both pressure and velocity perturbations within the tube is discussed. The nature of pressure perturbations depends upon a critical transition frequency, p , which in turn is dependent upon depth, field strength, pressure and density in the basic (unperturbed) state of the tube. At a given depth in the tube pressure oscillations are possible only for frequencies greater than p for frequencies below p exponentially decaying (evanescent) pressure modes occur. In a similar fashion the nature of motions within the flux tube depends upon a transition frequency, v . At a given depth within the tube vertically propagating waves are possible only for frequencies greater than v ; for frequencies below v exponentially decaying (evanscent) motions occur.The dependence of both v and p on depth is determined for each of the special cases, and for a realistic solar atmosphere. It is found that the use of an isothermal atmosphere, instead of a more realistic temperature profile, may well give misleading results.For the solar atmosphere it is found that v is zero at about 12 km above optical depth 5000= 1, thereafter rising to a maximum of 0.04 s–1 at some 600 km above 5000 = 1. Below 5000 = 1, in the convection zone, v has a maximum of 0.013 s–1. The transition frequency, p , for the pressure perturbations, is peaked at 0.1 s–1 just below 5000 = 1, falling to a minimum of 0.02 s–1 at about one scale-height deeper in the tube  相似文献   

12.
Past studies of interplanetary magnetic sector boundaries have been based on the assumption that one can determine the field polarities by comparing the field directions with those of the nominal Parker spiral angles. Previous investigators have found evidence for decreases of B, the magnitude of the magnetic fieldB, and increases of , the angle betweenB and the ecliptic plane, at sector boundaries. Others have argued that the characteristic thickness of sector boundaries exceeds that of tangential discontinuities, making sector boundaries a separate class of structures.We use a simple technique for inferring the polarities of interplanetary magnetic fields based on the assumption thatE > 2 keV electrons are always flowing along the magnetic field away from the Sun. Electron data from the UC Berkeley experiment on the ISEE-3 spacecraft are used to examine periods around several apparent sector boundaries in 1978 and 1979. We compare properties of (a) boundaries with field polarity changes and (b) large-angle ( > 60°) directional discontinuities with no field polarity changes. We find no significant differences between the sector boundaries and the directional discontinuities in terms of associated decreases in B or of values of . These results suggest no significant difference between sector boundaries and directional discontinuities other than the change in field polarities. Within limited statistics we find that about half the polarity changes would not have been identified using a requirement that > 90° and that half of the > 120° discontinuities would have been misidentified as polarity changes.  相似文献   

13.
Karlický  Marian 《Solar physics》2003,212(2):389-400
Using a 2-D MHD model, the magnetic field reconnection in the current sheet and corresponding plasma resonance lines (surfaces in 3-D), where the upper-hybrid frequency equals one of harmonics of the electron gyrofrequency, UH=(pe 2+Be 2)1/2=sBe (UH, pe, and Be are the upper hybrid, electron plasma, and cyclotron frequencies, respectively, and s is the integer harmonic number) are computed. Then at selected times and positions in the magnetic reconnection the spatial and time spectra of upper hybrid frequencies along the resonance lines are calculated. These spectra are discussed from the point of view of radio fine structures as narrowband dm-spikes, zebras, and lace bursts. It is shown that not only turbulent plasma outflows, suggested in the paper by Bárta and Karlický (2001), but also perturbed zones near the reconnection slow-mode shocks can be locations of the narrowband dm-spikes (and/or continua). Sources of the lace bursts (i.e. bursts with irregular lines) can be located in the reconnection space, too. On the other hand, the zebras (bursts with regular separations of zebra lines) need to be generated out of strongly perturbed reconnection areas.  相似文献   

14.
The present paper contains extensive tables of the values of theH-functionH(z,<0) and of the moments ofQ(x) (in terms of which the moments ofH(z, ) can be determined) appropriate for transfer of radiation in active amplifying media in which<0. These values have been computed correct to the 7th decimal place for values of in the range (–10–12)-(–1030) and for values of z[0,1] with the aid of a 48-point gaussian quadrature formula.  相似文献   

15.
On the basis of diffusion approach for normal modes, solutions of the radiative transfer problem are obtained and analysed for an optically thick tenuous plasma with a strong magnetic field. The case is considered when the scattering processes without change of photon frequency are dominant. The radiative transfer coefficients as well as spectra, angular dependences and polarization of the outgoing radiation are investigated in detail for a cold plasma,kT emc 2, |–s B|kT e/mc 2 )1/2|cos|, whereT e is the electron plasma temperature, B=eB/mc the electron cyclotron frequency,s=1,2,... the number of cyclotron harmonic and the angle between the magnetic field and wave vector. The effects of electronpositron vacuum polarization are taken into account and shown to be very significant. Simple analytic solutions are obtained for various limiting cases (small and large vacuum polarization; high, low and close to the cyclotron resonance radiation frequencies; different orientations of the magnetic field, etc). The results obtained are necessary for analysing X-ray and gamma-ray radiation from strongly magnetized neutron stars.  相似文献   

16.
It is shown that a discrete Alfvén wave can explain the natural oscillations of solar loop prominences by considering the existence of a current flow. Discrete Alfvén waves are a new class of Alfvén waves which is described by the inclusion of the finite ion cyclotron frequency (/ cl 0) and/or the equilibrium plasma current. In this paper we consider only the effect of the current since in solar prominences (/ cl 0). We have modeled the solar prominences as a cylindrical plasma, surrounded by vacuum (corona), with L a where L and a are the plasma column, length, and radius, respectively. We have calculated the spectrum of the discrete Alfvén waves as function of the magnitude and shape of the plasma current.  相似文献   

17.
L. Mollwo 《Solar physics》1973,30(2):497-511
The generation of space charge waves by micro instabilities of the Harris type and their conversion into electromagnetic waves is discussed in the framework of the dispersion curves of the extraordinary wave mode in the warm plasma. Acceleration of electrons as also nonlinear interactions of waves are taken into account. A survey of the parameter regions of the Harris instabilities is given. Distinct values p / c and p / c result, enabling the instability as well as the conversion. The moving type IVmA bursts, and on the other side the impulsive cm-bursts and the first phase of type IV bursts are correlated to different values p / c and corresponding heights in the corona. The space charge waves can produce hydromagnetic waves by parametric excitation, too (type II bursts). The proposed mechanism is discussed with respect to the energy balance and to the magnetic configurations derived from observations with the Culgoora radioheliograph.  相似文献   

18.
A model of 3He enrichments, which was proposed recently, is extended to study enhancements of heavy ions in high-energy particles. With weak currents parallel to the ambient magnetic field, oblique ion-acoustic waves and H cyclotron waves can become unstable. The former can have much greater growth rates at frequencies 3 He than at 4 He near the marginal states of instabilities. The latter can be unstable at 3 He for a wide region of plasma parameters. Thus they could cause 3He enrichments through cyclotron resonances. At the same time, these waves can resonate with first or higher harmonics of cyclotron frequencies of many other ions. We investigate these resonant ions for several cases of plasma temperature. This model predicts enhancements of heavy elements and of neutron-rich isotopes at T 10 MK. It shows heavy ion enhancements also at T 4 MK. Clear differences between these two temperatures, however, can be seen in charge states of ions. At T 2 MK, light ions as well as heavy ions can have cyclotron resonances with these waves, which suggests that such low temperatures are excluded.  相似文献   

19.
A two-component scheme for the generation of type III fundamental radiation is proposed. The first component of the fundamental arises at a plasma level L t because of the Rayleigh scattering of the plasma waves into electromagnetic radiation. The other component arises at L t /2 because of the decay of the first component into plasma waves and the subsequent rescattering of the plasma waves into electromagnetic radiation t 2( t /2). By its properties (location, directivity, polarization) the second component is essentially the same as the second harmonic radiation produced by a stream of fast electrons at L ( t /2). This scheme is used to solve the main problems (localization and directivity of the source, polarization of type III fundamental) of the harmonic theory of type III solar bursts.  相似文献   

20.
Lighthill's method of calculating the aerodynamic emission of sound waves in a homogeneous atmosphere is extended to calculate the acoustic and gravity-wave emission by turbulent motions in a stratified atmosphere. The acoustic power output is P ac 103 o u o 3 /l o M 5 ergs/cm3 sec, and the upward gravity wave flux is F zgr 102 o U o 3 /l o (l o ergs/cm3 sec. Here u 0 is the turbulence velocity scale, l 0 is its length scale, and H the scale height at the atmosphere. M = u 0/c 0 is the Mach number of the turbulence. The acoustic power output is proportional to the maximum value of the turbulence spectrum, and inversely to its rate of falloff at high frequencies. The stratification cuts off the acoustic emission at low Mach numbers. The gravity emission occurs near the critical angle to the vertical c = cos–1 / 2, where 2 2 = ( - 1)/ 2 (c 0/H), and at very short wavelengths. It is proportional to the large wave number tail of the turbulence spectrum. On the sun, gravity-wave emission is much more efficient than acoustic, but can occur only from turbulent motions in stable regions, whereas acoustic waves are produced by turbulence in the convection zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号