首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
SomeUniqueCharacteristicsofAtmosphericInterannualVariabilityinRainfallTimeSeriesoverIndiaandtheUnitedKingdom¥(A.MarySelvam,J....  相似文献   

2.
The difference between the transferred wind speed to 10-m height based on the equivalent neutral wind approach (U n) and the logarithmic approach (U log) is studied using in situ observations from the Indian, Pacific, and Atlantic Oceans, with special emphasis given to the North Indian Ocean. The study included U n ? U log variations with pressure, relative humidity, wind speed, air temperature, and sea surface temperature (SST). U n ? U log variation with respect to air temperature (T a) reveals that U n ? U log is out of phase with air temperature. Further analysis found that U n ? U log is in phase with SST (T s) ? T a and varies between ?1.0 and 1.0 m/s over the North Indian Ocean, while for the rest of the Oceans, it is between ?0.3 and 0.8 m/s. This higher magnitude of U n ? U log over the North Indian Ocean is due to the higher range of T s ? T a (?4 to 6 °C) in the North Indian Ocean. Associated physical processes suggested that the roughness length and friction velocity dependence on the air–sea temperature difference contributes to the U n ? U log difference. The study is further extended to evaluate the behavior of U n ? U log under cyclonic conditions (winds between 15 and 30 m/s), and it was found that the magnitude of Un ? U log varies 0.5–1.5 m/s under the cyclonic wind conditions. The increasing difference with the wind speed is due to the increase in the momentum transfer coefficient with wind speed, which modifies the friction velocity significantly, resulting in U n higher than U log. Thus, under higher wind conditions, U n ? U log can contribute up to half the retrieval error (5 % of the wind speed magnitude) to the satellite validation exercise.  相似文献   

3.
Data on instantaneous atmospheric Linke turbidity factor TL (m) are reported for clear days at Qena/Egypt in the period from June 1992 to May 1993.TL(m) is determined using the values of irradiance of direct solar radiation (I),which are calculated from global (G) and diffuse (D) - solar radiation measurements.Monthly and seasonally variations of both diurnal and daily average values of TL (m) increases steadily in the direction of sunset in the months from June to December 1992 as well as Summer and Autumn seasons,while it falls generally in this direction for the months from January to March and Winter season.In April and May,TL (m) fluctuates obviously through the day hours,it is also shown that the average values of TL(m) are particularly large during Summer months compared to other months of the year.This behavior of TL(m) is discussed in view of the variations of some weather elements,which affect the content of water vapor and dust particle in the atmosphere of the study region.It seems t be of s  相似文献   

4.
Maximum Entropy Spectral Analysis of the annual rainfall series for 1887–1976 (90 years) for Massachusetts (northeastern USA.) shows T = 17.8 (very near the 18.6 year luni-solar signal) as the most prominent periodicity. However, it explains only 12% variance. Also, the next prominent periodicity is T = 2.72 years, i.e. in the QBO (Quasi-Biennial Oscillation, T = 2–3 years) region. Also, regular periodicities account for only 50% variance, leaving 50% as a random component. Hence, predictions are unreliable. Roughly, excess rainfall during 1990–1994 and droughts during 1992–2002 are indicated; but occasional years of opposite behavior cannot be ruled out.  相似文献   

5.
Thermal emission is modeled from a canopy/soil surface, where the soil and the leaves are at different temperatures,T g andT c respectively. The temperatureT m corresponding to a radiometer reading is given by $$B_\lambda (T_m ) = \chi B_\lambda (T_g ) + (1 - \chi )B_\lambda (T_c ) ,$$ whereB λ denotes the Planck blackbody function at wavelength λ, χ specifies the fraction of the field of view occupied by the soil at a given view direction, and an emissivity of 1.0 is assumed for the plants and the soil. The dependence of the soil-fraction χ on the view direction and the structure is expressed by the viewing-geometry parameter, which allows for concise and simple formulation. We observe from our model that at large view zenith angles, only the plants are effectively seen (that is, χ tends to zero), and thereforeT c can be determined from observations at large zenith angles, to the extent that such observations are practical. Viewing from the zenith, χ = exp(-L hc), whereL hc is the projection of the canopy leaf-area (per unit surface area) on a horizontal plane. For off-zenith observations, the soil-fraction χ depends on the distribution in the azimuth of the projected areas of various leaf categories, in addition to the dependence on the sum total of these projections,L hc.L hc, rather than the leaf-area index, emerges as the parameter characterizing the optical thickness of the canopy. Inferring bothT c andT g from observations from the zenith and from large zenith angles is possible ifL hc is known from other measurements. Drooping of leaves under water-stress conditions affects the observed temperatureT m in a complicated way because a leaf-inclination change produces a change inL hc (for the same leaf area) and also a change in the dependence of χ on the view direction. Water stress can produce an increase of the soil-fraction χ and thus tends to produce an exaggerated increase in the observed temperature compared to the actual increase in canopy temperature. These effects are analyzed for a simulated soybean canopy.  相似文献   

6.
Extreme normalised residuals, defined as departures from the average values, of 65 daily maximum, T max, and minimum, T min, temperature series recorded in Catalonia (NE Spain) during 1950–2004 are analysed. Similarly to the sampling strategies applied to long dry spells, the partial duration series (PDS) offer some advantages in comparison with the annual extreme series. Instead of using a common percentile threshold for all temperature series, PDS are chosen according to the mean excess plot procedure. Series of extreme residuals are modelled, in terms of the L-moments formulation, by the generalised Pareto distribution. Extreme residuals of T max and T min are estimated for return periods ranging from 2 to 50 years and their spatial distribution is represented for selected return periods of 2, 5, 10, 25 and 50 years. Two daily extreme temperatures events, a hot episode (in August) and a cold episode (in February), are simulated taking into account the average T max (T min) for a day in August (February), their standard deviations and the extremes for a 50-year return period. Both simulations are compared with outstanding real episodes recorded on August 13th 2003 and February 11th 1956. Additionally, a spatial regionalisation of Catalonia in several clusters, in terms of the extreme residuals for return periods from 2 to 50 years, is done. A principal component analysis is applied to the extreme residual curves characterising every temperature series and, using as variables the principal components, the regionalisation is obtained by applying the average linkage clustering algorithm. Finally, each cluster is characterised by its average extreme residual curve for return periods ranging from 2 to 50 years at 1-year interval.  相似文献   

7.
“碧利斯”(2006)暴雨过程降水强度和降水效率分析   总被引:1,自引:1,他引:0  
刘圣楠  崔晓鹏 《大气科学》2018,42(1):192-208
利用2006年第4号强热带风暴“碧利斯”登陆过程的高分辨率数值模拟资料,结合三维地面降水诊断方程和降水效率公式,研究了“碧利斯”登陆后引发的局地暴雨过程,重点分析了此次局地暴雨过程的降水强度和降水效率及其与宏微观物理因子的联系。结果表明,降水强度越强,降水效率越高,但两者并非一一对应的线性关系,随着降水强度增大,降水效率增高的趋势逐渐变缓;伴随暴雨系统快速发展,降水强度和降水效率均显著增强,而主要降水源/汇项的时间变化要复杂得多;暴雨发生前时段与发生时段降水物理过程存在显著差异,发生前,较明显的水汽辐合显著加湿局地大气,并通过微物理转化支持降水云系发展,液相水凝物辐合对降水云系快速发展贡献明显,固相水凝物辐合贡献不显著,较强的“云滴与雨滴碰并(Pracw)”微物理过程同液相水凝物明显辐合可能有直接关系,“霰融化造成雨滴增长(Pgmlt)”仅为Pracw的27%,发生时段,进一步明显加强的水汽辐合依旧是主要降水来源,而汇项发生了明显变化,同时,微物理转化过程与发生前比更活跃,尤其是Pracw和Pgmlt,其中,Pgmlt增强更明显,其值接近Pracw的50%。  相似文献   

8.
Trees form a significant part of the urban vegetation. Their meteorological and climatological effects at all scales in urban environments make them a flexible tool for creating a landscape oriented to the needs of an urban dweller. This study aims at quantifying the spatio-temporal patterns of canopy temperature (T C) and canopy-to-air temperature difference (?T C) in relation to meteorological conditions and tree-specific (physiological) and urban site-specific characteristics. We observed T C and ?T C of 67 urban trees (18 species) using a high-resolution thermal-infrared (TIR) camera and meteorological measurements in the city of Berlin, Germany. TIR images were recorded at 1-min intervals over a period of 2?months from 1st July to 31st August 2010. The results showed that ?T C depends on tree species, leaf size and fraction of impervious surfaces. Average canopy temperature was nearly equal to air temperature. Species-specific maximum ?T C varied between 1.9?±?0.3?K (Populus nigra), 2.9?±?0.3?K (Quercus robur), 3.2?±?0.5?K (Fagus sylvatica), 3.9?±?1.0?K (Platanus acerifolia), 4.6?±?0.2?K (Acer pseudoplatanus), 5.0?±?0.5?K (A. platanoides) and 5.6?±?1.1?K (A. campestre). We analysed ?T C for a hot and dry period (A) and a warm and wet period (B). The range of species-specific ?T C at noon was nearly equal, i.e. 4.4?K for period A and 4.2?K for period B. Trees surrounded by high fraction of impervious surfaces showed consistently higher ?T C. Knowledge of species-specific canopy temperature and the impacts of urban structures are essential in order to optimise the benefits from trees in cities. However, comprehensive evaluation and optimisation should take the full range of climatological effects into account.  相似文献   

9.
Recently, and perhaps most threatening, Lake Victoria water level has been receding at an alarming rate. A recent study suggested the possibility of the expanded hydroelectric power station in Uganda. However, since the lake receives 80% of its refill through direct rainfall and only 20% from the basin discharge, climatic contributions cannot be ignored, since the 80% water is directly dependant on it. It is therefore necessary to investigate climatic contribution to the declining Lake Victoria water level observed over a long period, i.e., 30 years. This contribution uses 30 years period anomalies for rainfall, river discharge and lake level changes of stations within Lake Victoria basin to analyse linear and cyclic trends of climate indicators in relation to Lake levels. Linear trend analysis using the Student’s t test indicate a decreasing pattern in rainfall anomalies, with the slope being statistically similar to those of water levels at both Kisumu, Maziba and Jinja stations for the same period of time (1976–1999), thus showing a strong correlation. On the other hand, cyclic trend analysis using Discrete Fourier Transform (DFT) shows cyclic period of water level to coincide with those of droughts and rainfall. The strong relationship between climatic indicators of drought and rainfall on one-hand and lake levels on the other hand signifies the need to incorporate climate information in predicting, monitoring and managing lake level changes.  相似文献   

10.
Long-term data from diffuse and global irradiances were used to calculate direct beam irradiance which was used to determine three atmospheric turbidity coefficients (Linke T L , Ångström β and Unsworth–Monteith δ a ) at seven sites in Egypt in the period from 1981 to 2000. Seven study sites (Barrani, Matruh, Arish, Cairo, Asyut, Aswan and Kharga) have been divided into three categories: Mediterranean climate (MC), desert Nile climate (DNC) and urban climate (UC, Cairo). The indirect method (i.e., global irradiance minus diffuse irradiance) used here allows to estimate the turbidity coefficients with an RMSE% ≤20 % (for β, δ a and T L ) and ~30 % (for β) if compared with those estimated by direct beam irradiance and sunphotometeric data, respectively. Monthly averages of T L , β and δ a show seasonal variations with mainly maxima in spring at all stations, due to Khamsin depressions coming from Sahara. Secondary maxima is observed in summer and autumn at DNC and MC (Barrani and Arish) stations in summer due to dust haze which prevails during that season and at UC (Cairo) in autumn, due to the northern extension of the Sudan monsoon trough, which is accompanied by small-scale depressions with dust particles. The mean annual values of β, δ a , and T L (0.216, 0.314, and 4.6, respectively) are larger in Cairo than at MC stations (0.146, 0.216, and 3.8, respectively) and DNC stations (0.153, 0.227, and 3.8, respectively). Both El-Chichon and Mt. Pinatubo eruptions were examined for all records data at MC, UC and DNC stations. The overburden caused by Mt. Pinatubo’s eruption was larger than El-Chichon’s eruption and overburden for β, and T L at DNC stations (0.06, and 0.58 units, respectively) was more pronounced than that at MC (0.02, and 0.26, respectively) and UC (0.05 and 0.52 units, respectively) stations. The annual variations in wind speed and turbidity parameters show high values for both low and high wind speed at all stations. The wind directions have a clear effect on atmospheric turbidity, and consequently, largest turbidities occur when the wind carries aerosols from the main particle sources, such as industrial particle sources around Cairo or to some extent from the Sahara surrounding all study stations.  相似文献   

11.
Doppler sodar derived values of the temperature structure parameter C infT sup2 , the vertical velocity variance ¯′w 2, and the rate of dissipation of turbulent energy ?, were measured during unstable conditions above the Lannemezan heterogeneous site. The vertical profiles of these turbulent parameters, normalized by the classical convective scales are compared with those obtained using the same acoustic sounder above an homogeneous site during convective conditions. The typical decrease of C infT sup2 as Z -4/3 is partially verified on the heterogeneous site: for the lower levels, C infT sup2 exhibits an increase with Z whereas for the intermediate levels C infT sup2 . decreases as Z -4/3. For the upper levels, C infT sup2 increases with Z due to a signal-to-noise ratio lower than 1. The vertical profiles of ¯′w 2 above the two sites are rather similar. However, near the base of the convective inversion Z i , the values measured on the heterogeneous site are more scattered. The same scattering is also observed with the ? values; moreover, for the lower levels (Z<0.17Z i ) the increase of ? as Z decreases is more important at the homogeneous site than at the heterogeneous one. It is suggested that these particular features observed at lower levels above the heterogeneous site are mainly related to a complex local boundary layer induced by the near environment of the sodar (vegetation and relief).  相似文献   

12.
Zusammenfassung A. undE. Vassy haben in der Frage der Temperatur-abhängigkeit des Ozongehalts der Atmosphäre aus der Gleichung loge n –logJ n logK(T n ) geschlossen, daß auch die Gleichung loge n logJ n +logK(T n ) gültig sei. Es wird hier nun gezeigt, daß die bei der ersten Gleichung erlaubten Vernachlässigungen bei der zweiten zu großen Fehlern führen können und daß daher von A. undE. Vassy kein Beweis für die Richtigkeit der Beziehunge=J.K(T) erbracht ist.
Summary In the question of temperature dependence of ozone content of the atmosphere A. andE. Vassy have concluded from the equation loge n –logJ n logK(T n ) that also the formula loge n logJ n +logK(T n ) must be valid. In this paper it is proved that the neglections which may be admitted for the first equation, can conduct to great errors. Therefore A. andE. Vassy have not produced a proof for the correctness of the equatione=J.K(T).

Résumé A. etE. Vassy en étuidant le problème de la teneur de l'ozone atmosphérique en relation avec la température ont admis que l'équation loge n –logJ n logK(T n ) entraînait aussi la relation loge n logJ n +logK(T n ). On montre ici que les simplifications admises pour la première équation conduisent pour l'application de la seconde à de fortes erreurs, et que par conséquent ces auteurs n'ont pas fourni de preuve de la justesse de la relatione=J.K(T).
  相似文献   

13.
In this study,power spectral analysis and bandpass filtering of daily meteorological fields are performed to explore the roles of synoptic to quasi-monthly disturbances in influencing the generation of pre-summer heavy rainfall over South China.Two heavy rainfall episodes are selected during the months of April-June 2008-15,which represent the collaboration between the synoptic and quasi-biweekly disturbances and the synoptic and quasi-monthly disturbances,respectively.Results show that the first heavy rainfall episode takes place in a southwesterly anomalous flow associated with an anticyclonic anomaly over the South China Sea(SCS)at the quasi-biweekly scale with 15.1%variance contributions,and at the synoptic scale in a convergence zone between southwesterly and northeasterly anomalous flows associated with a southeastward-moving anticyclonic anomaly on the leeside of the Yungui Plateau and an eastwardpropagating anticyclonic anomaly from higher latitudes with 35.2%variance contribution.In contrast,the second heavy rainfall episode takes place in southwest-to-westerly anomalies converging with northwest-to-westerly anomalies at the quasi-monthly scale with 23.2%variance contributions to the total rainfall variance,which are associated with an anticyclonic anomaly over the SCS and an eastward-propagating cyclonic anomaly over North China,respectively.At the synoptic scale,it occurs in south-to-southwesterly anomalies converging with a cyclonic anomaly on the downstream of the Yungui Plateau with 49.3%variance contributions.In both cases,the lower-tropospheric mean south-to-southwesterly flows provide ample moisture supply and potentially unstable conditions;it is the above synoptic,quasi-biweekly or quasimonthly disturbances that determine the general period and distribution of persistent heavy rainfall over South China.  相似文献   

14.
Flow distortion over a forested hill is asymmetric, forming a recirculation region on the lee slope that increases the complexity in understanding atmosphere–biosphere interaction. To understand the complexity, we examine the effect of the geometry of forested hills on recirculation formation, structure, and related CO2 transport by performing numerical simulations over double-forested hills. The ratio (0.8) of hill height (H) to half length (L) is a threshold value of flow patterns in the recirculation region: below 0.8, sporadic reversed flow occurs; at 0.8, one vortex is formed; and above 0.8, a pair of counter-rotating vortices is formed. The depth of recirculation increases with increasing H/L. The contribution of advection to the CO2 budget is non-negligible and topographic-dependent. Vertical advection is opposite in sign to horizontal advection but cannot exactly offset in magnitude. Height-integrated advection shows significant variation in fluxes across hills. Gentle slopes can cause larger advection error. However, the relative importance of advection to CO2 budget is slope-independent.  相似文献   

15.
城市地表特征对京津冀地区夏季降水的影响研究   总被引:3,自引:1,他引:2  
张珊  黄刚  王君  刘永  贾根锁  任改莎 《大气科学》2015,39(5):911-925
本文利用京津冀地区24个气象站的日降水资料和耦合有单层城市冠层模式(SLUCM)的中尺度数值模式WRF的模拟结果,研究了城市地表特征对京津冀地区夏季降水的影响。结果表明,在京津冀城市面积迅速增长的近三十年(1981~2010),该地区大部分站点的降水量都呈现减少的趋势,减少最明显的站点主要集中在京津唐城市区域,其中≥50 mm的降水量减少趋势占总降水量减少趋势的50%以上。城市扩张可能是造成京津冀降水时空格局改变的因素之一。通过对比分析控制试验与敏感性试验的模拟结果,发现城市化引起的地表特征的改变使北京、天津、唐山主要城市地区的降水量和降水频次都有明显减少,而城市群下风向的降水量和降水强度则明显增加和增强,其中50 mm以上等级的降水量变化最为显著,贡献率在60%以上。城市地表特征使北京、天津和唐山地区50 mm以上等级降水量的百分比下降了6%~20%,下风向地区增加了8%。城市地表特征也影响了主要城市和城市群下风向地区降水量的日变化结构,使北京和唐山几乎所有时段的降水量都有所减少,而城市群下风向降水量的增加主要发生在白天。研究发现城市地表特征对深对流的抑制(加强)可能是造成京津冀地区降水减少(增多)的重要原因,而由于城市地表蒸发量的改变引起的潜热通量和对流有效位能的改变则可能是引起深对流变化的重要因素。  相似文献   

16.
The multifractal behavior of daily rainfall was investigated for a watershed in Eastern China to better understand the temporal structure of rainfall under monsoonal climate. In this study, over periods of up to 46 years, daily rainfall recorded in 1962 to 2007 at 10 meteorological stations in the administrative area of Lin-Yi City in Shandong province were analyzed with focus on features of power spectra, standard statistical moments, and exceedance probability tails of these daily rainfall time series. Spectral analysis and study of the moments of the rainfall intensity showed that a scaling range from 1 day to 1 year is present. Empirical moment scaling functions of the rainfall intensity calculated for different moments of order suggested that the values of universal multifractal parameters α and C 1 for all stations were approximated to 0.7 and 0.37, respectively. Comparing with the parameters estimated in other literatures, our results showed higher values for α but lower values for C 1 in general, which suggested that the rainfall series in the study watershed influenced by the East-Asia monsoon climate have similarities to that in France, but are spikier and smoother than that in the semi-arid region in Portugal. The parameter H values were estimated as vary from ?0.18 to ?0.22, which is similar to the result obtained by Tessier et al. (J Geophys Res-Atmos 101:26427–26440, 1996).  相似文献   

17.
Abstract

This article describes a new concept for an international climate regime for differentiation of future commitments: the ‘common but differentiated convergence’ approach (CDC). Under CDC, Annex-I countries' per-capita emission allowances converge within a convergence period to a low level. Individual non-Annex-I countries' allowances converge to the same level also within the same period (‘common convergence’), but starting when their per-capita emissions are a certain percentage above global average (‘differentiated’). Until then they may voluntarily take on ‘positively binding’ targets. This approach eliminates two concerns often voiced in relation to gradually converging per-capita emissions: (i) advanced developing countries have their commitment to reduce emissions delayed and their targets are not the same as Annex-I countries with equal per-capita emissions; (ii) CDC does not provide excess emission allowances to the least developing countries. Under CDC, stabilizing greenhouse gas concentrations at 550 and 650 ppm CO2-equivalent can be reached with participation at roughly 0% and 50% above global average and convergence to around 3 and 4.5 tCO2-eq/cap within 40 years. Even if the CDC approach is not implemented in its entirety, it is possible that the step-by-step decisions on the international climate regime can be guided by the principles provided in the CDC approach.  相似文献   

18.
利用广东省86个常规气象观测站1961—2010年的逐日降水资料,分析近50年广东省降水气候特征,探讨不同等级降水空间分布及随时间变化特征。结果表明:广东省降水丰沛,年均降水量多为1 500~2 000 mm;降水气候特征的区域差异较大,不同区域降水量与降水日数分布差异显著;各月的降水日数差异没有降水量月分布的差异明显,非汛期的日降水量较小,而汛期降水日数多且日降水量大;小雨日和中雨日的区域差异小,大雨日、暴雨日、大暴雨日的大值中心主要集中在广东省的三大暴雨中心地区 (清远中心、阳江中心、海陆丰中心),雨日量级分布大致由北向南逐渐增强,且随着降水等级的增加降雨日数迅速减少;小雨、中雨和大雨的降水贡献率均由粤北地区向沿海地区递减,暴雨和大暴雨的贡献率由粤北向沿海递增;小雨日数显著减少、大雨以上日数略有增多,总降水日数也呈减少趋势;小雨和中雨的贡献率呈减少趋势,大雨以上贡献率增多,使年均降水量呈增多趋势。   相似文献   

19.
We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = ?0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.  相似文献   

20.
High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号