首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgOvs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th–Sc–Zr/10, La–Th–Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V–Ni–Th ?10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ? suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.  相似文献   

3.
Oil‐source correlation studies have demonstrated that the crude oils in the Ordos Basin were mainly derived from organic‐rich lacustrine mudstones of the Yanchang Formation. The sedimentology, petrology and organic geochemistry of these mudstones have been studied intensively, but their trace and rare earth element (REE) characteristics have received little attention. In this paper, we present trace and rare earth element data of the Upper Triassic Yanchang Formation mudstones in the southern Ordos Basin to constrain the palaeoenvironment, provenance and depositional setting. Our results show that the REE and trace element concentrations of the Yanchang Formation mudstones are higher than those of the upper continental crust (UCC). The Sr contents and Sr/Ba and Y/Ho ratios of these mudstones indicate the absence of a marine transgression during the sedimentation of the Upper Triassic mudstones. The depositional environment of the Upper Triassic mudstones was slightly oxic as evidenced by the values of Eu/Eu*, Ce/Ce*, Ceanom, δU, U/Th, V/Cr and Ni/Co. The UCC‐normalized distribution pattern of REEs, spider diagrams, the ratios of related elements, the bivariate diagrams of Th/Sc–Zr/Sc and La/Th–Hf and the ternary plots of La–Th–Sc and Th–Sc–Zr/10 signify that the provenances of the Chang9–7 mudstones were mainly derived from a continental island arc, whereas the provenances of the Chang6–3 mudstones were mainly derived from a mixture of continental island arc and active continental margin, and the latter contain less recycled materials. Combined with the previous studies of detrital zircon dating and petrography of the Yanchang Formation sandstones in the southern Ordos basin, we propose that the Qinling orogenic belt served as one of the primary source regions occurring between the Chang7 and Chang6 periods, corresponding to the initial uplift of the west Qinling Mountains due to the collision between the Yangtze and North China blocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

5.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

6.
Greywackes (Dharwar greywackes) are the most abundant rock types in the northern part of the Dharwar-Shimoga greenstone belt of the western Dharwar craton. They are distinctly immature rocks with poorly-sorted angular to sub-angular grains, comprising largely quartz, plagioclase feldspar and lithic fragments of volcanics (mafic+felsic), chert and quartzite, with subordinate biotite, K-feldspar and muscovite. They are characterized by almost uniform silica (59.78-67.96 wt%; av. 62.58), alkali (4.62-7.35 wt%; av. 5.41) contents, SiO2/Al2O3 (3.71-5.25) ratios, and compositionally are comparable to the andesite and dacite. As compared to Ranibennur greywackes, located about 100 km south of Dharwad in the Dharwar-Shimoga greenstone belt, the Dharwar greywackes have higher K2O, CaO, Zr, Y, ΣREE, Th/Sc, Zr/Cr, La/Sc and lower Sr, Cr, Ni, Sc, Cr/Th values. The chondrite normalized patterns of Dharwar greywackes are characterized by moderately fractionated REE patterns with moderate to high LREE enrichment, with almost flat HREE patterns and small negative Eu anomalies, suggesting felsic dominated source rocks in the provenance. The frame work grains comprising felsic and mafic volcanics, feldspars and quartz suggest a mixed source in the provenance. The moderate CIA values ranging between 57 and 73, indicate derivation of detritus from fresh basement rocks and from nearby volcanic sources.The mixing calculations suggest that the average REE pattern is closely matching with a provenance having 40% dacite, 30% granite, 20% basalt and 10% tonalite. These greywackes were deposited in a subduction related forearc basin than a continental margin basin. Their La/Sc ratios are high (av. 4.07) compared to the Ranibennur greywackes (1.79), suggesting that the greywackes of the northern part of the basin received detritus from a more evolved continental crust than the greywackes of the central part of the Dharwar-Shimoga basin.  相似文献   

7.
The major, trace and rare earth element (REE) contents of metapelite (MPL), metapsammite (MPS) and metamarl (MM) samples from the Cambro-Ordovician Seydi?ehir Formation were analyzed to investigate their provenance and tectonic setting. The MPS, MPL, and MM samples have variable SiO2 concentrations, with average values of 72.36, 55.54, and 20.95 wt%, moderate SiO2/Al2O3 ratios (means of 6.88, 3.23, and 3.80), moderate to high Fe2O3 + MgO contents (means of 5.14, 9.55, 3.56 wt%), and high K2O/Na2O ratios (means of 3.26, 3.64, 2.90), respectively. On average, the chemical index of alteration (CIA) values of the MPS and the MPL are 65.87 and 71.96, respectively, while the chemical index of weathering (CIW) values are 74.54 and 85.09, respectively. These data record an intermediate to high degree of alteration (weathering) of plagioclase to illite/kaolinite in the samples’ provenance. The chondrite-normalized REE patterns of all the sample groups are similar and are characterized by subparallel light rare earth elements (LREE)-enriched, relatively flat heavy rare earth elements (HREE) patterns with pronounced Eu anomalies (mean of 0.69) and moderate fractionation [average (La/Yb)N = 8.7]. Plots of sediments in ternary diagrams of La, Th, Sc and elemental ratios (La/Sc, Th/Sc, Cr/Th, Eu/Eu*, La/Lu, Co/Th, La/Sc and Sc/Th), which are critical for determining provenance, and REE patterns indicate that the metaclastic units of the Seydi?ehir Formation were derived dominantly from felsic to intermediate magmatic rocks and not from a mafic source. The La–Sc–Th and Th–Sc–Zr/10 ternary diagrams of the Seydi?ehir Formation are typical of continental island arc/active continental margin tectonic settings. The geologic location and geochemistry of the Seydi?ehir Formation suggest that it was deposited in an Andean-type retroarc foreland basin during the Late Cambrian–Early Ordovician period. The Neoproterozoic intermediate to felsic magmatic rocks and metaclastic sediments with felsic origins of the Sand?kl?–Afyon Basement Complex (SBC) and their equivalent units, which are thought to be overlain by the younger units in the study area, may be the dominant source rocks for the Seydi?ehir Formation.  相似文献   

8.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

9.
Tertiary sandstones collected from southwest Sarawak, Malaysia, were analyzed to decipher their provenance, weathering, and tectonic setting. The studied sandstones have a sublitharenite composition and are dominantly composed quartz with little mica and feldspar, and a small amount of volcanic fragments. These sandstones were generally derived from quartz-rich recycled orogenic sources. They have relatively high SiO2 content with low Na2O, CaO, MnO, and MgO contents. Values of Chemical Index of Alteration (CIA) of these rock samples vary from 71 to 93, with an average of 81, implying intense chemical alteration during weathering. A felsic igneous source is suggested by a low concentration of TiO2 compared to CIA, enrichment of Light Rare Earth Elements, depletion of Heavy Rare Earth Elements, and negative Eu anomalies. A felsic origin is further supported by a Eu/Eu* range of 0.65–0.85 and high Th/Sc, La/Sc, La/Co, and Th/Co ratios. This work presents the first reported geochemical data of Tertiary sandstones of the Sarawak Basin. These data led us to conclude that the sandstones were dislodged from recycled orogenic sources and deposited in a slowly subsiding rifted basin in a passive continental tectonic setting.  相似文献   

10.
The Trichinopoly Group (later redesignated as Garudamangalam) has unconformable relationship with underlying Uttatur Group and is divided into lower Kulakanattam Formation and upper Anaipadi Formation. These calcareous sandstones are analysed major, trace and rare earth elements (REEs) to find out CIA, CIW, provenance and tectonic setting. The silica content of fossiliferous calcareous sandstone show wide variation ranging from 12.93 to 42.56%. Alumina content ranged from 3.49 to 8.47%. Higher values of Fe2O3 (2.29–22.02%) and low MgO content (0.75–2.44%) are observed in the Garudamangalam Formation. CaO (23.53–45.90) is high in these sandstones due to the presence of calcite as cementing material. Major element geochemistry of clastic rocks (Al2O3 vs. Na2O) plot and trace elemental ratio (Th/U) reveal the moderate to intense weathering of the source rocks. The Cr/Zr ratio of clastic rocks reveal with an average of 1.74 suggesting of felsic provenance. In clastic rocks, high ratios of \(\sum \)LREE/\(\sum \)HREE, La/Sc, Th/Sc, Th/Co, La/Co and low ratios of Cr/Zr, and positive Eu anomaly ranges from (Eu/Eu* = 1.87–5.30) reveal felsic nature of the source rocks.  相似文献   

11.
The Zoumi Basin was generated in a collisional tectonic setting during the Lower-Middle Miocene. The syn-orogenic flysch deposits of the basin have been well investigated by petrographic and geochemical studies to characterize the composition, source to sink routing system, and tectonic setting of the Zoumi flysch. Forty-three sandstone samples and 45 mudstone samples have been gathered from six measured stratigraphic sections. These samples have been analyzed using XRD, XRF, inductively coupled plasma-mass spectrometry (ICP-MS) for mudrocks and petrographic investigation for sandstones. The Lower-Middle Miocene Zoumi flysch is defined as sublitharenites and quartzarenites according to mineralogical content. Detrital grains are commonly subangular to subrounded, poorly sorted, and rich in quartz grains. Point counting modal analysis leads to craton interior and recycled orogen provenance with significant first-cycle sediment supply and low sedimentary recycling. Several chemical ratios (Al2O3/TiO2, La/Th, Cr/Th, Th/Sc, Zr/Sc) as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomaly suggest a dominant felsic rock sources. However, V-Ni-La*4, V-Ni-Th*10, and Th/Sc vs. Cr/Th plots do not exclude a mafic supply source nature which is evidenced by numerous ophiolitic outcrops scattered throughout the Mesorifan Subdomain (Mesorifan Ophiolitic Suture Zone).  相似文献   

12.
沉积岩中的主微量元素和稀土元素特征可以指示其物源、构造背景和沉积环境等.康托组地层沉积时代为古近纪,是青藏高原早期隆升后首先沉积的陆相碎屑岩,对该地层的物源信息及构造背景分析对于研究羌塘盆地新生代演化和高原隆升过程具有积极意义.本文对羌塘盆地半岛湖地区康托组地层进行了地层学、岩石学、元素地球化学和黏土含量分析,研究了其...  相似文献   

13.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   

14.
华北克拉通南缘古-中元古代构造-沉积演化的俯冲说、裂解说之争由来已久,兵马沟组作为熊耳群形成后的第一套碎 屑沉积岩层,对解释上述过程有重要意义。该文通过对豫西伊川地区的兵马沟组泥质岩微量及稀土元素的地球化学特征分析, 探讨了其沉积环境、物源,进而揭示了其发育的大地构造背景。结果表明:(1)兵马沟组泥质岩稀土元素含量高,球粒陨石标准 化后轻重稀土分异明显,δEu负异常,δCe异常不明显,富集Rb、Th、La、Ce、Nd、Zr、Hf 等,较上地壳平均值富集Sc、V、Cr、Co、Ni、 Rb;(2)Ceanom指数、V/V + Ni反映了泥质岩沉积时的还原环境,Sr/Ba、B/Ga表明其为由陆相至海相的过渡型沉积;(3)Cr/Zr、Th/U 等元素比值关系反应其物源无深部物质加入,La/Yb-Ce、Co/Th-La/Sc图解表明物源为中酸性火山岩及少量稳定陆壳物质; (4)Th-Sc-Zr/10、Th-Co-Zr/10图解表明其物源主要来自大陆岛弧。综合上述分析结果,结合区域地质信息,可以得出中元古界 兵马沟组形成于大陆岛弧弧后盆地,熊耳群分布区为中元古代俯冲成因的大陆岛弧区。  相似文献   

15.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

16.
Petrographical and geochemical characteristics of the Paleogene sandstones in the Ningnan Basin, NW China, were studied by analyzing thin sections and major, trace, and rare earth element (REE) compositions. The sandstones of the Sikouzi and Qingshuiying formations are sublitharenite to feldspathic litharenite and characterized by low-medium compositional and textural maturity. Petrographic provenance study indicates a quartzose-recycled provenance with higher concentration of Zr in the Qingshuiying Formation. Depositional environment of the Sikouzi and Qingshuiying sandstones was mainly oxic as evidenced by lower values of δEu, δCe, V/Cr, Ni/Co, U/Th, and δU. The Chemical Index of Weathering (CIW’) and the Th/U ratios (av. 3.3 and 3.54) reveal weak and moderate weathering history in the source area. The Zr, Nb, Y, Th, and U concentrations in the Qingshuiying Formation are comparable to upper continental crust (UCC) values and the negative Eu anomalies support contribution from a felsic source. However, a significantly larger range of Ce anomalies in the Sikouzi Formation also reveals mixing of felsic and mafic/ultramafic source terrains. The petrology and geochemistry analyses of the Sikouzi sandstones imply that the provenance was mainly derived from diabase in Xiang Shan and lower Cretaceous strata in the study area whereas the Qingshuiying sandstones were derived from the granites in the southern part of Liupan Shan, which means that the northeastward expansion of the Tibetan Plateau did not make the Liupan Shan a high relief during Paleogene. The present study has let to document the origin of the Ningnan Basin that was formed during the late phase of Ordos Basin reformation, along with the other synchronous peripheral fault-bounded basins of the Ordos Basin, and was not related to the northeastern extrusion of Tibetan Plateau.  相似文献   

17.
Geochemical compositions of the Lower Cambrian Niutitang Formation shales in the southeastern Yangtze Platform margin were investigated for provenance, tectonic setting, and depositional environment. The shale samples are characterized by higher abundances of large ion lithophile elements (Cs, Ba, and Pb), lower abundances of high field strength elements (Cr, Sc, and Co) and transition elements (Th, Zr, Hf, Nb, and Ta) relative to average shale. North American shale composition (NASC) -normalized rare earth element (REE) patterns are observed, with negative Ce anomalies, negative Eu anomalies, and positive Y anomalies. The chemical index of alteration (CIA) varies from 68.67–74.93. Alkali and alkaline element contents and CIA values suggest that the source rocks have undergone moderate weathering. The index of compositional variability (ICV), Zr/Sc and Th/Sc ratios vary from 0.53 to 1.07, 5.31 to 8.18 and 0.52–1.02, respectively. ICV values and relationships between Zr/Sc and Th/Sc ratios indicate negligible sedimentary recycling. The Al2O3/TiO2 (14–26) and TiO2/Zr (56–77) ratios imply that the source rocks of the investigated shales had intermediate igneous compositions. However, Cr/V ratios and a La/Th–Hf discrimination diagram suggest that the intermediate compositional signal of the source rocks was derived from a mixture of 75% mafic and 25% felsic igneous rocks rather than intermediate igneous rocks. The major source was the Jiangnan continental island arc with bimodal igneous rocks, lying to the south of the study area, together with a contribution from granites and gneisses uplifted and eroded in the Yangtze Block. Discrimination of tectonic setting using major and trace elements indicates that the source rocks originated in a transitional setting from active continental to passive margin, consistent with the failed intracontinental rift model for the evolution of the South China plate. The Niutitang Formation shales were deposited in a rift basin setting under conditions of anoxic bottom water in a redox-stratified water column, with organic-rich shales prospective for shale-gas production being found in deep-water downslope and basin environments rather than the shallow-water shelf.  相似文献   

18.
Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3?+?K2O?+?Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.  相似文献   

19.
The petrography and geochemistry (major, trace, and rare earth elements) of clastic sedimentary rocks from the Paleogene Dainan Formation (E2 d) in the North Jiangsu Basin, eastern China, are investigated to trace their provenance and to constrain their tectonic setting. The studied samples are characterized by LREE enrichment, flat HREE, and negative Eu anomaly similar to the upper continental crust composed chiefly of felsic components in the source area. Petrographic observation indicates that the sandstones contain predominant metamorphic and sedimentary clasts that were derived from peripheral recycled orogen and intrabasinal materials. The trace element ratios (Co/Th, La/Sc, La/Th, and Th/U) and the La-Th-Sc ternary plot further confirm that the sandstones are derived from granitic gneiss sources from recycled orogen and the intrabasinal mixed sedimentary provenance. The granitic gneiss source rocks may have derived from the Proterozoic granitic gneiss denuded in the eastern Dabie-Sulu orogen; and the intrabasinal provenance may come from the underlying strata during the Late Paleocene Wubao movement. The chemical index of alteration (CIA) and A-CN-K plot show that these source rocks may have experienced weak to medium chemical weathering. Analysis on tectonic setting of the source area suggests an active continental margin, which is intimate with tectonic feature of the Dabie-sulu orogen and the Yangtze block. In summary, we suggest that the North Jiangsu Basin is an ideal site for the study of the coupling between the uplift of the orogen and the subsidence of the foreland basin.  相似文献   

20.
Robert Cullers 《Lithos》1988,21(4):301-314
A series of soil and stream sediments developed during intense weathering on the metaluminous Danburg granite, northeastern Georgia, U.S.A., have been analyzed mineralogically and chemically. The concentrations of Ba, Na, Rb and Cs in the silt and coarser fractions are controlled mainly by feldspars and biotite. Hf is controlled by zircon, and the REE (rare-earth elements) and Th are largely controlled by sphene. Variations in feldspar, sphene and zircon may produce small variations in Eu/Sm and La/Lu ratios. Ferromagnesian minerals control Ta, Fe, Co, Sc and Cr concentrations.

The mineralogical and chemical composition of the Danburg granite is more closely reflected in the silt than in the sand or gravel fractions of stream sediments. In the silt, the contents of Rb, REE, Th, Ta, Fe, Co and Sc and the ratios of La/Sc, Th/Sc, La/Co, Th/Co, Eu/Sm and La/Lu are similar to those in the unweathered granite. In contrast, these element contents or ratios in the sands and gravels are 0.05−3× the concentration in the unweathered granite. Ta and Ba contents are an exception to the above. The Ta and Ba contents of the sands and gravels are similar to those of the granite.

In the kaolinite-halloysite clays, the content of Na is depleted relative to the source. Rb, Cs, Ba, Hf and Ta are depleted or enriched in the clays relative to the source, while the REE, Th, Fe, Co, Sc and Cr are enriched. The Eu/Sm (Eu anomaly size) and La/Lu ratios, and the REE patterns of the clays are similar to those of the source.

Thus, the mineralogy and element contents of a siltstone developed from metaluminous, granitic sources during intense weathering would be expected to be more similar to the source rock than the sandstones and conglomerates. Claystones should contain similar REE patterns and Eu/Sm ratios as the source rock, but such fine-grained sediments might represent much larger areas of source rocks than the more locally derived sandstones or conglomerates.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号