首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin, development and expansion of prehistoric agriculture in East Asia have been widely investigated over the past two decades using archaeobotanical analysis from excavated Neolithic and Bronze Age sites. Research on prehistoric agriculture has predominantly focused in the valleys of the Yellow River and the Yangtze River. Agricultural development during the Neolithic and Bronze Age periods in the Yunnan-Guizhou Plateau of southwest China, an important passageway for human migration into Southeast Asia, still remains unclear. In this paper, based on macrofossil and microfossil analysis and radiocarbon dating at the Shilinggang site, we investigate plant subsistence strategies in the Nujiang River valley during the Bronze Age period. Combined with previous archaeobotanical studies in the Yunnan-Guizhou Plateau, we explore agricultural development processes in this area during the Neolithic and Bronze Age. Our results indicate that rice and foxtail millet were cultivated in Shilinggang around 2500 cal a BP. Three phases of prehistoric agricultural development in the Yunnan-Guizhou Plateau can be identified: rice cultivation from 4800–3900 cal a BP, mixed rice and millet crop(foxtail millet and broomcorn millet) cultivation from 3900–3400 cal a BP, and mixed rice, millet crop and wheat cultivation from 3400–2300 cal a BP. The development of agriculture in the Yunnan-Guizhou Plateau during the Neolithic and Bronze Age periods was primarily promoted by prehistoric agriculture expansion across Eurasia, agricultural expansion which was also affected by the topographic and hydrological characteristics of the area.  相似文献   

2.
As the most fundamental economic sector of human societies,farming has played a significant role in interactions between humans and the environment.The study of crop patterns in various regions could not only clarify the economic foundations of early societies,but also greatly improve our understanding of interactions among human beings,the environment,and other creatures.In this regard,this study focuses on early agriculture practices at the Haojiatai site,situated in the cultural and natural transitional region between North and South China.Macro plant remains from this site reveal that foxtail millet was the most important staple crop here during the Longshan and Xinzhai periods(4300–3800 cal.yr BP),along with common millet and a small amount of rice and soybean.This crop pattern is in contrast to the ancient environmental conditions of this region,and cultural factors such as agriculture traditions and food preferences may have been more important in the formation process of this crop pattern.  相似文献   

3.
The history of cultural exchange in prehistoric Eurasia(CEPE) has been widely investigated. Based on archaeological evidence, this process is thought to date back to at least the early Bronze Age, although details about timings and routes remain unclear. It is likely that CEPE promoted the spread and exchange of crops that originated in different parts of Eurasia; since these remains can be definitely identified and directly dated, they provide ideal research materials to explore the history of CEPE. In this paper, we review the available archaeobotanical evidence and direct radiocarbon dates for crop remains, alongside carbon isotopic data from human bones unearthed from prehistoric sites in Eurasia, in order to investigate the history of the spread of millet crops, and wheat and barley, that were first domesticated in the eastern and western parts of Eurasia during prehistoric times.In combination with other archaeological evidences, we discuss the history of CEPE. Our results suggest that wheat and barley were domesticated in western Asia around 10500 a BP, spread into Europe and western Central Asia before 8000 a BP, and reaching eastern Central Asia and northwestern China between 4500 and 4000 a BP. Data show that both broomcorn and foxtail millet were domesticated in eastern Asia before 7700 a BP, spread into eastern Central Asia between 4500 and 4000 a BP, and into western Asia and Europe prior to 3500 a BP. Wheat, barley, and millet crops were first utilized together in eastern Kazakhstan within Central Asia around 4400 a BP, the region where earliest CEPE is likely to have taken place. These crops were mixedly used mainly in eastern central Asia and northwest China between 4500 and 3500 a BP, and then across the Eurasia before 2200 a BP. The results of this study suggest that transcontinental CEPE might have been initiated during the fifth millennium, before intensifying during the Bronze Age to lay the foundations for the creation of the ancient Silk Road during the Han Dynasty(between 202 BC and 220AD).  相似文献   

4.
Mixed farming of rice and millet is one of the basic agricultural modes in the upper and middle Huai River Valley(HRV). According to the latest data, this agricultural mode appeared during the middle and late Peiligang Culture(7.8–7.0 ka BP) in the upper HRV, and then became a common subsistence economy in the end of the Neolithic(5.0–4.0 ka BP) in both the upper and middle HRV. However, it is still not clear how this mixed farming developed in the upper HRV after its occurrence, nor are the regional differences in the development of mixed farming between the upper and middle HRV during the Neolithic completely understood. In this paper, flotation and starch analyses were conducted on samples from eight archaeological sites in the upper and middle HRV. The results indicate that the mixed farming of rice and millet first appeared in the later phase of the middle Neolithic in the regions of the Peiligang Culture, then developed quite rapidly in the late Neolithic(6.8–5.0 ka BP), finally becoming the main subsistence economy at the end of the Neolithic in the upper HRV. However, there are obvious differences in the emergence and development of agriculture between the middle and upper HRV. Rice farming was the only agricultural system during the middle Neolithic, lasting until the end of the Neolithic, when mixed farming appeared in the middle HRV. Furthermore, although mixed farming appeared in both the upper and middle HRV during the end of the Neolithic, the roles of rice, foxtail millet and broomcorn millet in the subsistence economy were not the same. In general, millet was more widely cultivated than rice in the upper HRV, but rice occupied the same or a slightly more prominent position in the middle HRV at the end of the Neolithic. These results are significant for understanding the process of agricultural development and transformation, as well as human adaptation to climatic and cultural variability duringthe Neolithic.  相似文献   

5.
It is generally recognized that millet agriculture originated in northern China. However, the domestication process of foxtail millet(Setaria italica) and broomcorn millet(Panicum miliaceum) is still poorly understood. Based on statistical and morphological analyses of ancient millet starch grains, a tangible hypothesis has been proposed for the long-term domestication of green foxtail millet(S. viridis). However, the hypothesis requires validation by evidence from more regions and more archaeological finds. The West Liaohe region is one of the earliest regions of millet cultivation. Here, we report ancient starch grains recovered from 12 stone grinding tools from eight sites of the Xiaohexi culture(before 8.5 ka BP), Xinglongwa culture(8.2–7.4 ka BP), Zhaobaogou culture(7.0–6.4 ka BP), and Hongshan culture(6.5–5.0 ka BP) in the West Liaohe region of China. Our results indicate that the proportion of millet starch grains with wrinkled surfaces and rough edges, which are diagnostic of wild millet grasses, decreased from 13.0% to 3.4% from the Xiaohexi culture to the Hongshan culture. Millet starch grains measuring 16.8 ?m, a size class recorded only in domesticated foxtail millet, increased from 55.0% to 62.1%. These millet data imply that the process of millet domestication in the West Liaohe region began in the Xiaohexi period and continued up to the Hongshan period.  相似文献   

6.
7.
China is one of the main global centers of origin of agriculture. Foxtail millet (Setaria italica), common millet (Panicum miliaceum), and rice (Oryza sativa) were the first crops to be domesticated in China. There remain many uncertainties and controversies in our current understanding of the chronology, locations, and plant types at the origins and the process of evolution of prehistoric millet and rice farming, and their relationships with climate change and human adaptation. This review summarizes the research progress made by Chinese scientists over the last decade on the origins and evolution of prehistoric agriculture. It highlights novel techniques and methods for identifying early crop remains, including plant macrofossils (carbonized seeds, spikelets), microfossils (phytoliths, calciphytoliths, starch, pollen), and biomarkers; new evidence on the origins, development, and spread of early agriculture; and research related to climate and environmental changes. Further, we pinpoint and discuss existing challenges and potential opportunities for further in-depth investigation of the origins and evolution of agriculture and the adaption of human activities to climate change.  相似文献   

8.
通过对江汉平原JZ-2010湖相沉积剖面AMS14C年代的精确测定与校正,以及代用指标粒度、磁化率的分析和研究,重建了研究区12.76 cal ka BP以来的环境演变过程:1)12.76-6.70 cal ka BP,区域环境处于偏干的晚冰期向湿润的早全新世发展阶段.2)6.70-4.47 cal ka BP,区域环境湿润,为湿度配置最佳的全新世适宜期,这是大溪文化向屈家岭文化转变时期自然背景.3)4.47-3.67 cal ka BP,区域气候环境偏干,其中经历了明显的4.2 cal ka BP干旱事件.4)3.67-1.22 cal ka BP时期,环境向湿润发展;在2.5 cal ka BP左右水动力条件明显变强,此时正对应于古云梦泽扩张时期.5)1.22 cal ka BP后,研究区处于湖泊面积减小的干旱时期;人类活动带来的影响达到高峰,围湖造田等农业活动也是江汉平原湖群趋于衰退的重要原因之一.  相似文献   

9.
Changes in monthly streamflow and the potential influences and feedbacks of agricultural activities are investigated. Significant decreases in streamflow are observed in northern China, including the Yellow, Huaihe and Haihe river basins, while in southern China streamflow increases significantly in the Yangtze, Pearl and South river basins. This spatial pattern of changes in streamflow indicates that the imbalance in water resources between northern (dry) and southern (wet) China has increased during past decades. On the one hand, available water resources are a controlling factor determining the expansion of irrigated land and the structure of crop plantation (i.e. rice, wheat, corn or bean); on the other hand, crop planting structure and effective irrigated areas are important determinants of changes in streamflow. The increasing effective irrigation and rice planting areas in northern China may increase water withdrawal from rivers, causing subsequent decreases in streamflow, while in southeastern China, decreasing effective irrigation areas enhance the increases in streamflow.  相似文献   

10.
Prehistoric human history on the Tibetan Plateau is a hotly debated topic. Archaeological research on the plateau during the past few decades has enormously improved our understanding of the topic and makes it possible for us to consider the processes and mechanisms of prehistoric human migration to the region. By reviewing the published archaeological research on the Tibetan Plateau, we propose that the first people on the plateau initially spread into the He-Huang region from the Chinese Loess Plateau, and then moved to the low elevation Northeastern Tibetan Plateau and perhaps subsequently to the entire plateau. This process consisted of four stages.(1) During the climatic amelioration of the Last Deglacial period(15–11.6 ka BP), Upper Paleolithic hunter-gatherers with a developed microlithic technology first spread into the Northeastern Tibetan Plateau.(2) In the early-mid Holocene(11.6–6 ka BP), Epipaleolithic microlithic hunter-gatherers were widely distributed on the northeastern plateau and spread southwards to the interior plateau, possibly with millet agriculture developed in the neighboring low elevation regions.(3) In the mid-late Holocene(6–4 ka BP), Neolithic millet farmers spread into low elevation river valleys in the northeastern and southeastern plateau areas.(4) In the late Holocene(4–2.3 ka BP), Bronze Age barley and wheat farmers further settled on the high elevation regions of the Tibetan Plateau, especially after 3.6 ka BP. Finally, we suggest that all of the reported Paleolithic sites earlier than the LGM on the Tibetan Plateau need further examination.  相似文献   

11.
The sediment stratigraphy of a 4 m thick intercalated Holocene alluvial fill and valley floor peat at a site in the Milfield Basin, Northumberland, has been dated by a series of eight 14C assays, and related to a previously analysed pollen record. The sequence extends from the earliest Holocene until c. 2800 cal. BP . Prior to the onset of peat inception, substantial amounts of channel-trenching can be demonstrated to have occurred in the Milfield Basin during the Loch Lomond Stadial. There is no measurable early Holocene accelerated fluvial activity, but a major flooding event occurred at c. 7500 cal. BP , much earlier than recorded elsewhere in the region. The explanation for this is not clear. However, the cessation of mid-Holocene overbank sedimentation at c. 4000–3500 cal. BP is tentatively correlated with slope stability associated with woodland regeneration. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
In order to explore subsistence patterns in northern Shaanxi Province around 4,000 yr BP,28 human and 24 animal bones from the Shengedaliang site were sampled for stable carbon and nitrogen isotope ratio analysis.The results show that most people primarily subsisted on C_4 resources,e.g.millet and millet-related animal products,despite the fact that there was some intake of C_3 plants by some individuals.Stable nitrogen isotope values indicate that there were differences in meat consumption between individuals at the site.Pigs were mainly foddered with millet and millet byproducts,as well as some cattle,according to their highδ~(13)C values.However,most cattle and the sheep/goats consumed wild C_3 plants at Shengedaliang.Our above findings indicates that subsistence patterns in northern Shaanxi around 4,000 yr BP were characterized by millet farming,while the grassland animal husbandry,e.g.cattle and sheep/goats raising,displayed very little contribution to local economy.The intensive millet farming in northern Shaanxi provided enough food for population growth,ensured the accumulation of wealth,and consequently accelerated social differentiation and complexity.  相似文献   

13.
For almost two decades, the relationship between prehistoric natural disasters that struck the Guanting Basin in northeast Tibetan Plateau and the destruction of Lajia, an archeological site, has attracted scholarly attention and been widely discussed. Whereas most studies have focused on the impacts of disasters on a single site within the Guanting Basin, few have examined patterns of spatiotemporal evolution of human settlements from the Neolithic to the Bronze Age. Consequently, there is a lack of clarity on the processes and mechanisms underlying the evolution of prehistoric human-land relationships in the Guanting Basin. We therefore examined spatiotemporal variations in settlements in the Guanting Basin during the period, based on the locations, altitudes, and areas of archaeological sites. We found that four sites were located on the third terrace of the Yellow River during the late Yangshao period(5500–5000 cal yr BP) and distributed within a small area. During the period between the Majiayao and Qijia cultures(5300–3600 cal yr BP), the number of sites evidently increased and the scale and distribution of settlements expanded, with settlements generally shifting toward the lower elevation areas of the Guanting Basin.During the Xindian period(3400–2700 cal yr BP), the number and scale of sites showed a downward trend and the distribution of settlements contracted. The Xindian settlement underwent altitude-based spatial differentiation, with some groups moving to areas at higher altitudes and others remained in lower altitude areas. Moreover, we found that the number, scale, and distribution range of Neolithic and Bronze Age sites in the Guanting Basin were closely related to the evolution and distribution patterns of prehistoric cultures in the regions of Gansu and Qinghai, which were further affected by climate change and agricultural development. Furthermore, there is no evidence that the altitudinal distribution pattern of Neolithic and Bronze Age settlements in the Guanting Basin was influenced by paleofloods rather it was primarily influenced by changes in subsistence strategies.  相似文献   

14.
Economic value of water and economic analysis of water use management in Gansu Province of China have attracted widespread public attention. With the socioeconomic development, research on water resources has become more important than before. In this study, we define “water productivity” as the changes of economic production outputs of sectoral activities in every cubic meter of water input, which is also the technical coefficient of water resource use in each sector. According to Computable General Equilibrium (CGE) framework, based on the Input–Output Table 2007 and water resources bulletin of Gansu Province, we introduced the water into the ORANI-G (A Generic Single-Country Computable General Equilibrium model) model through the nested constant elasticity of substitution (CES) production function to analyze the changes of economic productions caused by water supply changes. We then examined water productivity in different sectors. Empirical results showed that current water productivity is underestimated. Agricultural water productivity is lower than that of the secondary and tertiary industries, even although agricultural water use is the largest part of water use in Gansu Province, and therefore improving agricultural water productivity can greatly mitigate the water shortage. Simulation results indicate that industrial transformation and development of water-saving industries will also mitigate water scarcity. Moreover, sensitivity analysis shows that the empirical results are robust under different scenarios. The results also show that higher constant elasticity of substitution rate (CES) between water and other production factors will contribute to sustainable development.  相似文献   

15.
Sediment pollen samples from the Huola Basin in the northern sector of northeast China, and surface pollen samples from its environs, were analyzed to reconstruct accurately the historical response of vegetation to climate change since 9100 cal yr BP. Pollen analysis of the Huola Section indicates that vegetation experienced a transformation from early-mid Holocene warm-cold mixed vegetation to late Holocene cold-temperate vegetation. From 9100 to 6000 cal yr BP, the study area was warmer and moister than at present, developing Corylus, Carpinus, Pinus, Picea, Betula and Larix-dominated forests. Two cooling events at 6000–5000 and 3500–2500 cal yr BP led to a decrease in Corylus, Carpinus and other warmth-loving vegetation, whereas cold temperate forests composed of Larix and Betula expanded. After 2500 cal yr BP, Larix and Betula dominated cold-temperate vegetated landscapes. The Holocene warm period in NE China(9100–6000 cal yr BP) suggests that such warming could have resulted in a strengthening of the influence from East Asian Summer Monsoon on northernmost NE China and would have benefited the development of warm-temperate forest vegetation and an improved plant load, which also provides the similarity model for the possible global warming in the future.  相似文献   

16.
The ecotone between alpine steppe and meadow in the central Tibetan Plateau is sensitive to climate changes. Here we used the pollen records from three lakes in this region to reconstruct the evolution of local vegetation and climate since 8200 cal. yr BP. The history of temperature and precipitation was reconstructed quantitatively with multi-bioclimatic indexes and a transfer function from pollen records. Results show that the steppe/meadow dominated during the period of 8200–6500 cal. yr BP, especially 8200–7200 cal. yr BP, indicating the central Tibetan Plateau was controlled by strong monsoon. The steppe dominated during the periods of 6000–4900, 4400–3900, and 2800–2400 cal. yr BP. The steppe decreased gradually and the meadow expanded during the period of 4900–4400 cal. yr BP. Three century-scale drought events occurred during 5800–4900, 4400–3900 and 2800 cal. yr BP, respectively. The first time when the regional climate shifted to the present level was at 6500 cal. yr BP in the central Plateau. Since 3000 cal. yr BP, the temperature and precipitation have decreased gradually to the present level. However, the cold climate between 700–300 cal. yr BP likely corresponds to the Little Ice Age. Supported by Chinese Academy of Sciences 100 Talents Project (Grant No. 29082762), National Natural Science Foundation of China (Grant Nos. 40671196, 40372085, 49371068, 49871078), and U.S. National Science Foundation (Grant Nos. ATM-9410491, ATM-008194)  相似文献   

17.
Investigating the spatiotemporal dynamics of agricultural water status during crop growth season can provide scientific evidences for more efficient use of water resources and sustainable development of agricultural production under climate change. In this study, the following were used to evaluate the multidecadal changes in moisture condition during climatic growth period of crops in Northeast China from 1961 to 2010: (1) the daily climate variables gathered from 101 meteorological stations in Northeast China for 1961–2010; (2) FAO (Food and Agriculture Organization) Penman–Monteith equation; (3) 80% guaranteed probability for agro-climatic indicators; and (4) the daily average temperature stably passing 0 °C, which is the threshold temperature of climatic growth period for crops. Reference crop evapotranspiration (ET0) and relative moisture index were further calculated. The results showed that Northeast China’s climate in the main agricultural areas over the past 50 years was warmer and drier in general, with a growing range and intensity of drought. From 1961 to 2010, when the daily average temperature stably passed 0 °C, the average annual total precipitation (P) and ET0 with 80% guaranteed probability in Northeast China both emerged as decreasing trends with averages of 555.0 mm and 993.7 mm, respectively. However, the decline in P was greater than that of annual total ET0. As a result, the annual relative moisture indices sharply decreased with an average of −0.44, mostly fluctuating from −0.59 to −0.25. As far as spatial distributions were concerned, the inter-regional reductions in P and relative moisture index over the past 50 years were conspicuous, especially in some agricultural areas of central Heilongjiang Province, northeastern Jilin Province and northeastern Liaoning Province. On the contrary, ET0 obviously increased in some agricultural areas of central and northwestern Heilongjiang Province (eg. Qiqiha’er, Shuangyashan, Hegang, Suihua, etc.), and northeastern Jilin Province (eg. Baicheng). This indicated that drought existed and was unfavorable for crop growth and development, especially during the period of 2001–2010. This finding revealed that drought was still one of the most important agricultural meteorological disasters in Northeast China. Some countermeasures should be formulated to adapt to climate change. Our findings have important implications for improving climate change impact studies, for breeding scientists to breed higher yielding cultivars, and for agricultural production to cope with ongoing climate change.  相似文献   

18.
High-resolution peat humification records were obtained from Dajiuhu of the Shennongjia Mountains and Qianmutian of the Tianmu Mountains to study climate changes in East China. The analyses of pollen, organic matters, TOC, and Rb/Sr indicate a high degree of peat humification and thus strong decomposition of organic matter when climate was dry. Conversely, when climate was humid, the degree of humification is low because peat was preserved in a waterlogged condition. Peat humification from Dajiuhu occurred not only during the Younger Dryas (about 11.4–12.6 cal ka BP), the Bølling-Allerød Warm Period (12.6–15.2 cal ka BP), and the Oldest Dryas (about 15.2–16.0 cal ka BP), but also during the early Holocene (about 11.4–9.4 cal ka BP), the 8.2 cal ka BP cold event, and the Holocene Optimum (about 7.0–4.2 cal ka BP). Both peat humification records since nearly 5 ka BP are consistent, showing that mountain peatland has synchronous responses to the East Asia monsoon-induced precipitation. The LOI data confirm the above observation. The monsoon precipitation since nearly 5 ka BP recorded in these two peat profiles can be divided into three phases. During 4.9–3.5 ka BP, precipitation amount was high but fluctuated greatly. During 3.5–0.9 ka BP, precipitation amount was low. During 0.9–0 ka BP, degree of humification reduced gradually, indicating the increase of monsoon precipitation. Contrast to other high-resolution records from East China monsoon region shows that the monsoon precipitation records of the two peat profiles since nearly 16 ka BP are controlled by a common forcing mechanism of summer solar radicalization in the Northern Hemisphere.  相似文献   

19.
The study of climatic changes since the Late Glacial Age has become one of the hotspots of the PAGES in recent years.Deep-sea cores from the high-latitude area show that the climate was very unstable during the transitional period from the Late Glacial Age to the Holocene[1,2],which has also been testified by the geological records from ocean sediments,ice cores and terrestrial sections in different latitudes of the earth[3—8].What’s more,climatic instability also ex-isted in the Holoce…  相似文献   

20.
We simulated the effects of irrigation on groundwater flow dynamics in the North China Plain by coupling the NIES Integrated Catchment‐based Ecohydrology (NICE) model with DSSAT‐wheat and DSSAT‐maize, two agricultural models. This combined model (NICE‐AGR) was applied to the Hai River catchment and the lower reach of the Yellow River (530 km wide by 840 km long) at a resolution of 5 km. It reproduced excellently the soil moisture, evapotranspiration and crop production of summer maize and winter wheat, correctly estimating crop water use. So, the spatial distribution of crop water use was reasonably estimated at daily steps in the simulation area. In particular, NICE‐AGR reproduced groundwater levels better than the use of statistical water use data. This indicates that NICE‐AGR does not need detailed statistical data on water use, making it very powerful for evaluating and estimating the water dynamics of catchments with little statistical data on seasonal water use. Furthermore, the simulation reproduced the spatial distribution of groundwater level in 1987 and 1988 in the Hebei Plain, showing a major reduction of groundwater level due mainly to overpumping for irrigation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号